前瞻性SLP:存在交换运算的自动向量化

Vasileios Porpodas, Rodrigo C. O. Rocha, L. F. Góes
{"title":"前瞻性SLP:存在交换运算的自动向量化","authors":"Vasileios Porpodas, Rodrigo C. O. Rocha, L. F. Góes","doi":"10.1145/3168807","DOIUrl":null,"url":null,"abstract":"Auto-vectorizing compilers automatically generate vector (SIMD) instructions out of scalar code. The state-of-the-art algorithm for straight-line code vectorization is Superword-Level Parallelism (SLP). In this work we identify a major limitation at the core of the SLP algorithm, in the performance-critical step of collecting the vectorization candidate instructions that form the SLP-graph data structure. SLP lacks global knowledge when building its vectorization graph, which negatively affects its local decisions when it encounters commutative instructions. We propose LSLP, an improved algorithm that can plug-in to existing SLP implementations, and can effectively vectorize code with arbitrarily long chains of commutative operations. LSLP relies on short-depth look-ahead for better-informed local decisions. Our evaluation on a real machine shows that LSLP can significantly improve the performance of real-world code with little compilation-time overhead.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Look-ahead SLP: auto-vectorization in the presence of commutative operations\",\"authors\":\"Vasileios Porpodas, Rodrigo C. O. Rocha, L. F. Góes\",\"doi\":\"10.1145/3168807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Auto-vectorizing compilers automatically generate vector (SIMD) instructions out of scalar code. The state-of-the-art algorithm for straight-line code vectorization is Superword-Level Parallelism (SLP). In this work we identify a major limitation at the core of the SLP algorithm, in the performance-critical step of collecting the vectorization candidate instructions that form the SLP-graph data structure. SLP lacks global knowledge when building its vectorization graph, which negatively affects its local decisions when it encounters commutative instructions. We propose LSLP, an improved algorithm that can plug-in to existing SLP implementations, and can effectively vectorize code with arbitrarily long chains of commutative operations. LSLP relies on short-depth look-ahead for better-informed local decisions. Our evaluation on a real machine shows that LSLP can significantly improve the performance of real-world code with little compilation-time overhead.\",\"PeriodicalId\":103558,\"journal\":{\"name\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3168807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

自动向量化编译器从标量代码中自动生成矢量(SIMD)指令。直线代码矢量化的最先进算法是超字级并行化(Superword-Level Parallelism, SLP)。在这项工作中,我们确定了SLP算法核心的一个主要限制,即收集形成SLP图数据结构的向量化候选指令的性能关键步骤。SLP在构建其向量化图时缺乏全局知识,这对其在遇到交换指令时的局部决策产生负面影响。我们提出了一种改进的LSLP算法,它可以插入到现有的SLP实现中,并且可以有效地对具有任意长交换操作链的代码进行矢量化。LSLP依赖于短深度预测,以获得更明智的本地决策。我们在真实机器上的评估表明,LSLP可以显著提高真实代码的性能,而编译时间开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Look-ahead SLP: auto-vectorization in the presence of commutative operations
Auto-vectorizing compilers automatically generate vector (SIMD) instructions out of scalar code. The state-of-the-art algorithm for straight-line code vectorization is Superword-Level Parallelism (SLP). In this work we identify a major limitation at the core of the SLP algorithm, in the performance-critical step of collecting the vectorization candidate instructions that form the SLP-graph data structure. SLP lacks global knowledge when building its vectorization graph, which negatively affects its local decisions when it encounters commutative instructions. We propose LSLP, an improved algorithm that can plug-in to existing SLP implementations, and can effectively vectorize code with arbitrarily long chains of commutative operations. LSLP relies on short-depth look-ahead for better-informed local decisions. Our evaluation on a real machine shows that LSLP can significantly improve the performance of real-world code with little compilation-time overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信