分层最短路径问题(特邀论文)

Timothy G. Griffin
{"title":"分层最短路径问题(特邀论文)","authors":"Timothy G. Griffin","doi":"10.1109/COMSNETS.2010.5432000","DOIUrl":null,"url":null,"abstract":"In the last ten years it has become clear that some Internet routing protocols do not compute globally optimal paths, but only locally optimal ones. This represents something rather novel in the context of the vast literature on routing protocols for data networking. This paper introduces the Stratified Shortest-Paths Problem as a tool for exploring the borderline between local and global optimality problems. The paper contains a tutorial overview of the algebraic concepts used.","PeriodicalId":369006,"journal":{"name":"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Stratified Shortest-Paths Problem (invited paper)\",\"authors\":\"Timothy G. Griffin\",\"doi\":\"10.1109/COMSNETS.2010.5432000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last ten years it has become clear that some Internet routing protocols do not compute globally optimal paths, but only locally optimal ones. This represents something rather novel in the context of the vast literature on routing protocols for data networking. This paper introduces the Stratified Shortest-Paths Problem as a tool for exploring the borderline between local and global optimality problems. The paper contains a tutorial overview of the algebraic concepts used.\",\"PeriodicalId\":369006,\"journal\":{\"name\":\"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS.2010.5432000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2010.5432000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在过去的十年里,很明显,一些互联网路由协议不计算全局最优路径,而只计算局部最优路径。在关于数据网络路由协议的大量文献中,这代表了一些相当新颖的东西。本文介绍了分层最短路径问题,作为探索局部最优性问题和全局最优性问题之间界限的工具。这篇论文包含了所使用的代数概念的教程概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Stratified Shortest-Paths Problem (invited paper)
In the last ten years it has become clear that some Internet routing protocols do not compute globally optimal paths, but only locally optimal ones. This represents something rather novel in the context of the vast literature on routing protocols for data networking. This paper introduces the Stratified Shortest-Paths Problem as a tool for exploring the borderline between local and global optimality problems. The paper contains a tutorial overview of the algebraic concepts used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信