资源有限测度的更强Kolmogorov 0 - 1定律

J. J. Dai
{"title":"资源有限测度的更强Kolmogorov 0 - 1定律","authors":"J. J. Dai","doi":"10.1109/CCC.2001.933887","DOIUrl":null,"url":null,"abstract":"Resource-bounded measure has been defined on the classes E, E/sub 2/, ESPACE, E/sub 2/SPACE, REC, and the class of all languages. It is shown here that if C is any of these classes and X is a set of languages that is closed under finite variations and has outer measure less than 1 in C, then X has measure 0 in C. This result strengthens Lutz's resource-bounded generalization of the classical Kolmogorov zero-one law. It also gives a useful sufficient condition for proving that a set has measure 0 in a complexity class.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A stronger Kolmogorov zero-one law for resource-bounded measure\",\"authors\":\"J. J. Dai\",\"doi\":\"10.1109/CCC.2001.933887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource-bounded measure has been defined on the classes E, E/sub 2/, ESPACE, E/sub 2/SPACE, REC, and the class of all languages. It is shown here that if C is any of these classes and X is a set of languages that is closed under finite variations and has outer measure less than 1 in C, then X has measure 0 in C. This result strengthens Lutz's resource-bounded generalization of the classical Kolmogorov zero-one law. It also gives a useful sufficient condition for proving that a set has measure 0 in a complexity class.\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在E类、E/sub 2/类、ESPACE类、E/sub 2/SPACE类、REC类和所有语言类上定义了资源边界度量。这里表明,如果C是这些类中的任何一类,而X是一组在有限变化下封闭且在C中具有小于1的外测度的语言,则X在C中具有0测度。这一结果加强了Lutz对经典Kolmogorov 0 - 1定律的资源有界推广。给出了证明复杂度类中一个测度为0的集合的一个有用的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stronger Kolmogorov zero-one law for resource-bounded measure
Resource-bounded measure has been defined on the classes E, E/sub 2/, ESPACE, E/sub 2/SPACE, REC, and the class of all languages. It is shown here that if C is any of these classes and X is a set of languages that is closed under finite variations and has outer measure less than 1 in C, then X has measure 0 in C. This result strengthens Lutz's resource-bounded generalization of the classical Kolmogorov zero-one law. It also gives a useful sufficient condition for proving that a set has measure 0 in a complexity class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信