密度诱导p-范数支持向量机的二值分类

Ruikun Ma, Zhi Li, Junyan Tan
{"title":"密度诱导p-范数支持向量机的二值分类","authors":"Ruikun Ma, Zhi Li, Junyan Tan","doi":"10.1109/ICAIOT.2015.7111525","DOIUrl":null,"url":null,"abstract":"This paper presents a new version of support vector machine (SVM) named density induced p-norm SVM (0 <; p <; 1), DPSVM for shot. Our DPSVM introduces the density degrees into the standard p-norm SVM. It extracts the relative density degrees for the training examples and takes these degrees as relative margins for corresponding training examples. Our DPSVM not only inherits good performance of p-norm SVM which can realize feature selection and classification simultaneously, but also improves the performance of p-norm SVM. The numerical experiments results show that our DPSVM is more effective than some usual methods in feature selection and classification.","PeriodicalId":310429,"journal":{"name":"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density induced p-norm support vector machine for binary classification\",\"authors\":\"Ruikun Ma, Zhi Li, Junyan Tan\",\"doi\":\"10.1109/ICAIOT.2015.7111525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new version of support vector machine (SVM) named density induced p-norm SVM (0 <; p <; 1), DPSVM for shot. Our DPSVM introduces the density degrees into the standard p-norm SVM. It extracts the relative density degrees for the training examples and takes these degrees as relative margins for corresponding training examples. Our DPSVM not only inherits good performance of p-norm SVM which can realize feature selection and classification simultaneously, but also improves the performance of p-norm SVM. The numerical experiments results show that our DPSVM is more effective than some usual methods in feature selection and classification.\",\"PeriodicalId\":310429,\"journal\":{\"name\":\"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIOT.2015.7111525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIOT.2015.7111525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的支持向量机(SVM),即密度诱导p-范数支持向量机(0 <;p <;1)、DPSVM为shot。我们的DPSVM在标准p-范数支持向量机中引入了密度度。它提取训练样例的相对密度度,并将这些密度度作为相应训练样例的相对余量。我们的DPSVM不仅继承了p-范数支持向量机同时实现特征选择和分类的优良性能,而且提高了p-范数支持向量机的性能。数值实验结果表明,该方法在特征选择和分类方面比一般方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density induced p-norm support vector machine for binary classification
This paper presents a new version of support vector machine (SVM) named density induced p-norm SVM (0 <; p <; 1), DPSVM for shot. Our DPSVM introduces the density degrees into the standard p-norm SVM. It extracts the relative density degrees for the training examples and takes these degrees as relative margins for corresponding training examples. Our DPSVM not only inherits good performance of p-norm SVM which can realize feature selection and classification simultaneously, but also improves the performance of p-norm SVM. The numerical experiments results show that our DPSVM is more effective than some usual methods in feature selection and classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信