网络钓鱼检测的机器学习分类算法:比较评价与分析

Noah Ndakotsu Gana, S. Abdulhamid
{"title":"网络钓鱼检测的机器学习分类算法:比较评价与分析","authors":"Noah Ndakotsu Gana, S. Abdulhamid","doi":"10.1109/NigeriaComputConf45974.2019.8949632","DOIUrl":null,"url":null,"abstract":"Exponential growth experienced in Internet usage have pave way to exploit users of the Internet, phishing attack is one of the means that can be used to obtained victim confidential details unwittingly across the Internet. A high false positive rate and low accuracy has been a setback in phishing detection. In this research RandomForest, SysFor, SPAARC, RepTree, RandomTree, LMT, ForestPA, JRip, PART, NNge, OneR, AdaBoostM1, RotationForest, LogitBoost, RseslibKnn, LibSVM, and BayesNet were employed to achieve the comparative analysis of machine classifier. The performance of the classifier algorithms were rated using Accuracy, Precision, Recall, F-Measure, Root Mean Squared Error, Receiver Operation Characteristics Area, Root Relative Squared Error False Positive Rate and True Positive Rate using WEKA data mining tool. The research revealed that quit a number of classifiers also exist which if properly explored will yield more accurate results for phishing detection. RondomForest was found to be an excellent classifier that gives the best accuracy of 0.9838 and a false positive rate of 0.017. The comparative analysis result indicates the achievement of low false positive rate for phishing classification which suggest that anti-phishing application developer can implement the machine learning classification algorithm that was discovered to be the best in this study to enhance the feature of phishing attack detection and classification.","PeriodicalId":228657,"journal":{"name":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine Learning Classification Algorithms for Phishing Detection: A Comparative Appraisal and Analysis\",\"authors\":\"Noah Ndakotsu Gana, S. Abdulhamid\",\"doi\":\"10.1109/NigeriaComputConf45974.2019.8949632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exponential growth experienced in Internet usage have pave way to exploit users of the Internet, phishing attack is one of the means that can be used to obtained victim confidential details unwittingly across the Internet. A high false positive rate and low accuracy has been a setback in phishing detection. In this research RandomForest, SysFor, SPAARC, RepTree, RandomTree, LMT, ForestPA, JRip, PART, NNge, OneR, AdaBoostM1, RotationForest, LogitBoost, RseslibKnn, LibSVM, and BayesNet were employed to achieve the comparative analysis of machine classifier. The performance of the classifier algorithms were rated using Accuracy, Precision, Recall, F-Measure, Root Mean Squared Error, Receiver Operation Characteristics Area, Root Relative Squared Error False Positive Rate and True Positive Rate using WEKA data mining tool. The research revealed that quit a number of classifiers also exist which if properly explored will yield more accurate results for phishing detection. RondomForest was found to be an excellent classifier that gives the best accuracy of 0.9838 and a false positive rate of 0.017. The comparative analysis result indicates the achievement of low false positive rate for phishing classification which suggest that anti-phishing application developer can implement the machine learning classification algorithm that was discovered to be the best in this study to enhance the feature of phishing attack detection and classification.\",\"PeriodicalId\":228657,\"journal\":{\"name\":\"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

互联网使用的指数级增长为利用互联网用户铺平了道路,网络钓鱼攻击是可以用来在互联网上不知不觉地获取受害者机密信息的手段之一。高误报率和低准确率一直是网络钓鱼检测的瓶颈。本研究采用RandomForest、SysFor、SPAARC、RepTree、RandomTree、LMT、ForestPA、JRip、PART、NNge、OneR、AdaBoostM1、RotationForest、LogitBoost、RseslibKnn、LibSVM和BayesNet实现机器分类器的对比分析。采用WEKA数据挖掘工具对分类器算法的准确率、精密度、召回率、F-Measure、均方根误差、接收者操作特征面积、均方根误差假阳性率和真阳性率进行评分。研究表明,还有许多分类器存在,如果对它们进行适当的探索,将为网络钓鱼检测产生更准确的结果。我们发现RondomForest是一个非常优秀的分类器,其准确率为0.9838,假阳性率为0.017。对比分析结果表明,网络钓鱼分类的误报率较低,这表明反网络钓鱼应用开发者可以实现本研究中发现的最好的机器学习分类算法,以增强网络钓鱼攻击检测和分类的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Classification Algorithms for Phishing Detection: A Comparative Appraisal and Analysis
Exponential growth experienced in Internet usage have pave way to exploit users of the Internet, phishing attack is one of the means that can be used to obtained victim confidential details unwittingly across the Internet. A high false positive rate and low accuracy has been a setback in phishing detection. In this research RandomForest, SysFor, SPAARC, RepTree, RandomTree, LMT, ForestPA, JRip, PART, NNge, OneR, AdaBoostM1, RotationForest, LogitBoost, RseslibKnn, LibSVM, and BayesNet were employed to achieve the comparative analysis of machine classifier. The performance of the classifier algorithms were rated using Accuracy, Precision, Recall, F-Measure, Root Mean Squared Error, Receiver Operation Characteristics Area, Root Relative Squared Error False Positive Rate and True Positive Rate using WEKA data mining tool. The research revealed that quit a number of classifiers also exist which if properly explored will yield more accurate results for phishing detection. RondomForest was found to be an excellent classifier that gives the best accuracy of 0.9838 and a false positive rate of 0.017. The comparative analysis result indicates the achievement of low false positive rate for phishing classification which suggest that anti-phishing application developer can implement the machine learning classification algorithm that was discovered to be the best in this study to enhance the feature of phishing attack detection and classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信