特征空间学习的前馈神经滤波器。初步结果

H. Teodorescu, C. Bonciu
{"title":"特征空间学习的前馈神经滤波器。初步结果","authors":"H. Teodorescu, C. Bonciu","doi":"10.1109/ISNFS.1996.603815","DOIUrl":null,"url":null,"abstract":"An adaptive filtering technique using a multilayer perceptron neural network designed as a transversal filter, based on the information extracted from the second order statistics of the signal, is presented. The statistics are extracted with a principal component analysis (PCA) hierarchical network. The training procedure uses an error signal computed as the difference between the desired and actual largest eigenvalues. Some advantages of the proposed method are illustrated by preliminary experiments on electrocardiographic (ECG) signal filtering.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Feedforward neural filter with learning in features space. Preliminary results\",\"authors\":\"H. Teodorescu, C. Bonciu\",\"doi\":\"10.1109/ISNFS.1996.603815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive filtering technique using a multilayer perceptron neural network designed as a transversal filter, based on the information extracted from the second order statistics of the signal, is presented. The statistics are extracted with a principal component analysis (PCA) hierarchical network. The training procedure uses an error signal computed as the difference between the desired and actual largest eigenvalues. Some advantages of the proposed method are illustrated by preliminary experiments on electrocardiographic (ECG) signal filtering.\",\"PeriodicalId\":187481,\"journal\":{\"name\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNFS.1996.603815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于从信号的二阶统计量中提取的信息,提出了一种基于多层感知器神经网络设计成横向滤波器的自适应滤波技术。统计数据的提取采用主成分分析(PCA)层次网络。训练过程使用一个误差信号作为期望和实际最大特征值之间的差值。通过对心电信号滤波的初步实验,说明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedforward neural filter with learning in features space. Preliminary results
An adaptive filtering technique using a multilayer perceptron neural network designed as a transversal filter, based on the information extracted from the second order statistics of the signal, is presented. The statistics are extracted with a principal component analysis (PCA) hierarchical network. The training procedure uses an error signal computed as the difference between the desired and actual largest eigenvalues. Some advantages of the proposed method are illustrated by preliminary experiments on electrocardiographic (ECG) signal filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信