按需非结构化网格转换,以减少在原位分析期间的记忆压力

J. Woodring, J. Ahrens, T. Tautges, T. Peterka, V. Vishwanath, Berk Geveci
{"title":"按需非结构化网格转换,以减少在原位分析期间的记忆压力","authors":"J. Woodring, J. Ahrens, T. Tautges, T. Peterka, V. Vishwanath, Berk Geveci","doi":"10.1145/2535571.2535592","DOIUrl":null,"url":null,"abstract":"When coupling two different mesh-based codes, for example with in situ analytics, the typical strategy is to explicitly copy data (deep copy) from one implementation to another, doing translation in the process. This is necessary because codes usually do not share data model interfaces or implementations. The drawback is that data duplication results in an increased memory footprint for the coupled code. An alternative strategy, which we study in this paper, is to share mesh data through on-demand, fine-grained, run-time data model translation. This saves memory, which is an increasingly scarce resource at exascale, for the increased use of in situ analysis and decreasing memory per core. We study the performance of our method compared against a deep copy with in situ analysis at scale.","PeriodicalId":262085,"journal":{"name":"Proceedings of the 8th International Workshop on Ultrascale Visualization","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On-demand unstructured mesh translation for reducing memory pressure during in situ analysis\",\"authors\":\"J. Woodring, J. Ahrens, T. Tautges, T. Peterka, V. Vishwanath, Berk Geveci\",\"doi\":\"10.1145/2535571.2535592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When coupling two different mesh-based codes, for example with in situ analytics, the typical strategy is to explicitly copy data (deep copy) from one implementation to another, doing translation in the process. This is necessary because codes usually do not share data model interfaces or implementations. The drawback is that data duplication results in an increased memory footprint for the coupled code. An alternative strategy, which we study in this paper, is to share mesh data through on-demand, fine-grained, run-time data model translation. This saves memory, which is an increasingly scarce resource at exascale, for the increased use of in situ analysis and decreasing memory per core. We study the performance of our method compared against a deep copy with in situ analysis at scale.\",\"PeriodicalId\":262085,\"journal\":{\"name\":\"Proceedings of the 8th International Workshop on Ultrascale Visualization\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Workshop on Ultrascale Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535571.2535592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Ultrascale Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535571.2535592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

当耦合两个不同的基于网格的代码时,例如使用原位分析,典型的策略是显式地将数据从一个实现复制到另一个实现(深度复制),在此过程中进行转换。这是必要的,因为代码通常不共享数据模型接口或实现。缺点是数据重复会增加耦合代码的内存占用。我们在本文中研究的另一种策略是通过按需、细粒度、运行时数据模型转换来共享网格数据。这节省了内存,这在百亿亿次上是一个越来越稀缺的资源,用于增加原位分析的使用和减少每个核心的内存。我们研究了我们的方法的性能与深度复制在规模上的原位分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-demand unstructured mesh translation for reducing memory pressure during in situ analysis
When coupling two different mesh-based codes, for example with in situ analytics, the typical strategy is to explicitly copy data (deep copy) from one implementation to another, doing translation in the process. This is necessary because codes usually do not share data model interfaces or implementations. The drawback is that data duplication results in an increased memory footprint for the coupled code. An alternative strategy, which we study in this paper, is to share mesh data through on-demand, fine-grained, run-time data model translation. This saves memory, which is an increasingly scarce resource at exascale, for the increased use of in situ analysis and decreasing memory per core. We study the performance of our method compared against a deep copy with in situ analysis at scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信