基于机器学习的MaNGA速度分散特征分类

Yi Duann, Yong Tian, Chung-Ming Ko
{"title":"基于机器学习的MaNGA速度分散特征分类","authors":"Yi Duann, Yong Tian, Chung-Ming Ko","doi":"10.1093/rasti/rzad044","DOIUrl":null,"url":null,"abstract":"\n We present a machine learning (ML) approach for classifying kinematic profiles of elliptical galaxies in the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Previous studies employing ML to classify spectral data of galaxies have provided valuable insights into morphological galaxy classification. This study aims to enhance the understanding of galaxy kinematics by leveraging ML. The kinematics of 2,624 MaNGA elliptical galaxies are investigated using integral field spectroscopy (IFS) by classifying their one-dimensional velocity dispersion (VD) profiles. We utilised a total of 1,266 MaNGA VD profiles and employed a combination of unsupervised and supervised learning techniques. The unsupervised K-means algorithm classifies VD profiles into four categories: flat, decline, ascend, and irregular. A bagged decision trees classifier (TreeBagger) supervised ensemble is trained using visual tags, achieving 100% accuracy on the training set and 88% accuracy on the test set. Our analysis identifies the majority (68%) of MaNGA elliptical galaxies presenting flat VD profiles, which requires further investigation into the implications of the Dark Matter problem.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying MaNGA Velocity Dispersion Profiles by Machine Learning\",\"authors\":\"Yi Duann, Yong Tian, Chung-Ming Ko\",\"doi\":\"10.1093/rasti/rzad044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a machine learning (ML) approach for classifying kinematic profiles of elliptical galaxies in the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Previous studies employing ML to classify spectral data of galaxies have provided valuable insights into morphological galaxy classification. This study aims to enhance the understanding of galaxy kinematics by leveraging ML. The kinematics of 2,624 MaNGA elliptical galaxies are investigated using integral field spectroscopy (IFS) by classifying their one-dimensional velocity dispersion (VD) profiles. We utilised a total of 1,266 MaNGA VD profiles and employed a combination of unsupervised and supervised learning techniques. The unsupervised K-means algorithm classifies VD profiles into four categories: flat, decline, ascend, and irregular. A bagged decision trees classifier (TreeBagger) supervised ensemble is trained using visual tags, achieving 100% accuracy on the training set and 88% accuracy on the test set. Our analysis identifies the majority (68%) of MaNGA elliptical galaxies presenting flat VD profiles, which requires further investigation into the implications of the Dark Matter problem.\",\"PeriodicalId\":367327,\"journal\":{\"name\":\"RAS Techniques and Instruments\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAS Techniques and Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rasti/rzad044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种机器学习(ML)方法,用于在Apache Point Observatory (MaNGA)调查中对椭圆星系的运动剖面进行分类。以往利用机器学习对星系光谱数据进行分类的研究为星系形态学分类提供了有价值的见解。本文利用积分场光谱(IFS)对2624个MaNGA椭圆星系的一维速度色散(VD)分布进行了分类,研究了它们的运动学特性。我们总共使用了1266个MaNGA VD档案,并结合了无监督和有监督的学习技术。无监督K-means算法将VD轮廓分为四类:平坦、下降、上升和不规则。使用视觉标签训练袋装决策树分类器(TreeBagger)监督集成,在训练集上达到100%的准确率,在测试集上达到88%的准确率。我们的分析表明,大多数(68%)的日本椭圆星系呈现平坦的VD轮廓,这需要进一步研究暗物质问题的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying MaNGA Velocity Dispersion Profiles by Machine Learning
We present a machine learning (ML) approach for classifying kinematic profiles of elliptical galaxies in the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Previous studies employing ML to classify spectral data of galaxies have provided valuable insights into morphological galaxy classification. This study aims to enhance the understanding of galaxy kinematics by leveraging ML. The kinematics of 2,624 MaNGA elliptical galaxies are investigated using integral field spectroscopy (IFS) by classifying their one-dimensional velocity dispersion (VD) profiles. We utilised a total of 1,266 MaNGA VD profiles and employed a combination of unsupervised and supervised learning techniques. The unsupervised K-means algorithm classifies VD profiles into four categories: flat, decline, ascend, and irregular. A bagged decision trees classifier (TreeBagger) supervised ensemble is trained using visual tags, achieving 100% accuracy on the training set and 88% accuracy on the test set. Our analysis identifies the majority (68%) of MaNGA elliptical galaxies presenting flat VD profiles, which requires further investigation into the implications of the Dark Matter problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信