基于人民福利指标的南苏拉威西省区市分组的Ensemble ROCK方法聚类分析

Taufiq Hidayat, R. Ruliana, Z. Rais, M. Botto-Tobar
{"title":"基于人民福利指标的南苏拉威西省区市分组的Ensemble ROCK方法聚类分析","authors":"Taufiq Hidayat, R. Ruliana, Z. Rais, M. Botto-Tobar","doi":"10.35877/mathscience1761","DOIUrl":null,"url":null,"abstract":"Cluster analysis is a data mining technique used to group data based on the similarity of attributes of object data. One of the problems that are often encountered in cluster analysis is data with a mixed categorical and numerical scale. The clustering stage for mixed data using the ensemble ROCK (Robust Clustering using links) method is carried out by combining clustering outputs from categorical and numeric scale data. The method used for categorical data is the ROCK method and the method used for numerical data is the Hierarchical Agglomerative method. The best clustering method is determined based on the criteria for the ratio between the standard deviations within the group (SW) and the smallest standard deviation between groups (SB). Based on 24 observation objects in the regencies and cities of the Province of South Sulawesi, the ROCK ensemble method with a value of 0.1 produces three clusters with a ratio value of 2,27 x10-16 based on the combination of the output results of the ROCK method and the Hierarchical Agglomerative method","PeriodicalId":431947,"journal":{"name":"ARRUS Journal of Mathematics and Applied Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Analysis Using Ensemble ROCK Method in District/City Grouping in South Sulawesi Province based on People's Welfare Indicators\",\"authors\":\"Taufiq Hidayat, R. Ruliana, Z. Rais, M. Botto-Tobar\",\"doi\":\"10.35877/mathscience1761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is a data mining technique used to group data based on the similarity of attributes of object data. One of the problems that are often encountered in cluster analysis is data with a mixed categorical and numerical scale. The clustering stage for mixed data using the ensemble ROCK (Robust Clustering using links) method is carried out by combining clustering outputs from categorical and numeric scale data. The method used for categorical data is the ROCK method and the method used for numerical data is the Hierarchical Agglomerative method. The best clustering method is determined based on the criteria for the ratio between the standard deviations within the group (SW) and the smallest standard deviation between groups (SB). Based on 24 observation objects in the regencies and cities of the Province of South Sulawesi, the ROCK ensemble method with a value of 0.1 produces three clusters with a ratio value of 2,27 x10-16 based on the combination of the output results of the ROCK method and the Hierarchical Agglomerative method\",\"PeriodicalId\":431947,\"journal\":{\"name\":\"ARRUS Journal of Mathematics and Applied Science\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARRUS Journal of Mathematics and Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35877/mathscience1761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARRUS Journal of Mathematics and Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35877/mathscience1761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析是一种基于对象数据属性相似性对数据进行分组的数据挖掘技术。在聚类分析中经常遇到的问题之一是具有混合分类和数值尺度的数据。混合数据的聚类阶段使用集成ROCK(鲁棒链接聚类)方法,通过结合分类和数字尺度数据的聚类输出来进行。用于分类数据的方法是ROCK方法,用于数值数据的方法是分层凝聚方法。根据组内标准差(SW)与组间最小标准差(SB)之比的标准确定最佳聚类方法。ROCK集合法基于南苏拉威西省县市的24个观测对象,将ROCK方法的输出结果与分层聚集法相结合,得到3个比值值为2,27 x10-16的聚类,其值为0.1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster Analysis Using Ensemble ROCK Method in District/City Grouping in South Sulawesi Province based on People's Welfare Indicators
Cluster analysis is a data mining technique used to group data based on the similarity of attributes of object data. One of the problems that are often encountered in cluster analysis is data with a mixed categorical and numerical scale. The clustering stage for mixed data using the ensemble ROCK (Robust Clustering using links) method is carried out by combining clustering outputs from categorical and numeric scale data. The method used for categorical data is the ROCK method and the method used for numerical data is the Hierarchical Agglomerative method. The best clustering method is determined based on the criteria for the ratio between the standard deviations within the group (SW) and the smallest standard deviation between groups (SB). Based on 24 observation objects in the regencies and cities of the Province of South Sulawesi, the ROCK ensemble method with a value of 0.1 produces three clusters with a ratio value of 2,27 x10-16 based on the combination of the output results of the ROCK method and the Hierarchical Agglomerative method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信