{"title":"一种计算二维和三维NURBS曲线最小距离的高性能方法","authors":"YingLiang Ma, W. T. Hewitt, M. Turner","doi":"10.1080/2151237X.2006.10129214","DOIUrl":null,"url":null,"abstract":"We present a fast, accurate, and robust method to compute the minimum distance between two 2D and 3D NURBS curves. This is carried out by first decomposing both of the NURBS curves into their piecewise-Bézier forms. Candidate pairs, as a subset of all possible pairs, are extracted based on a two-level selection process. The first-level selection uses upper-lower bounds of Bézier subcurves to remove pairs. The second-level selection is based on the spatial relationship test between a pair of Bézier curves. An iterative multidimensional Newton-Raphson method is applied on all candidate pairs in order to calculate the approximate local minimum distances. Finally, by comparing all local minimum distances between a pair of Bézier subcurves, we are able to find the global minimum distance. The accuracy is improved by further use of the multidimensional Newton-Raphson method to give high accuracy. Source code is available online.","PeriodicalId":318334,"journal":{"name":"Journal of Graphics Tools","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A High-Performance Method for Calculating the Minimum Distance between Two 2D and 3D NURBS Curves\",\"authors\":\"YingLiang Ma, W. T. Hewitt, M. Turner\",\"doi\":\"10.1080/2151237X.2006.10129214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fast, accurate, and robust method to compute the minimum distance between two 2D and 3D NURBS curves. This is carried out by first decomposing both of the NURBS curves into their piecewise-Bézier forms. Candidate pairs, as a subset of all possible pairs, are extracted based on a two-level selection process. The first-level selection uses upper-lower bounds of Bézier subcurves to remove pairs. The second-level selection is based on the spatial relationship test between a pair of Bézier curves. An iterative multidimensional Newton-Raphson method is applied on all candidate pairs in order to calculate the approximate local minimum distances. Finally, by comparing all local minimum distances between a pair of Bézier subcurves, we are able to find the global minimum distance. The accuracy is improved by further use of the multidimensional Newton-Raphson method to give high accuracy. Source code is available online.\",\"PeriodicalId\":318334,\"journal\":{\"name\":\"Journal of Graphics Tools\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graphics Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2151237X.2006.10129214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graphics Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2151237X.2006.10129214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A High-Performance Method for Calculating the Minimum Distance between Two 2D and 3D NURBS Curves
We present a fast, accurate, and robust method to compute the minimum distance between two 2D and 3D NURBS curves. This is carried out by first decomposing both of the NURBS curves into their piecewise-Bézier forms. Candidate pairs, as a subset of all possible pairs, are extracted based on a two-level selection process. The first-level selection uses upper-lower bounds of Bézier subcurves to remove pairs. The second-level selection is based on the spatial relationship test between a pair of Bézier curves. An iterative multidimensional Newton-Raphson method is applied on all candidate pairs in order to calculate the approximate local minimum distances. Finally, by comparing all local minimum distances between a pair of Bézier subcurves, we are able to find the global minimum distance. The accuracy is improved by further use of the multidimensional Newton-Raphson method to give high accuracy. Source code is available online.