面向空气污染时空分析的在线可扩展SVM集成学习方法(OSSELM

Shahid Ali, Simon Dacey
{"title":"面向空气污染时空分析的在线可扩展SVM集成学习方法(OSSELM","authors":"Shahid Ali, Simon Dacey","doi":"10.5121/IJDKP.2017.7602","DOIUrl":null,"url":null,"abstract":"Environmental air pollution studies fail to consider the fact that air pollution is a spatio-temporal problem. The volume and complexity of the data have created the need to explore various machine learning models, however, those models have advantages and disadvantages when applied to regional air pollution analysis, furthermore, most environmental problems are global distribution problems. This research addressed spatio-temporal problem using decentralized computational technique named Online Scalable SVM Ensemble Learning Method (OSSELM). Evaluation criteria for computational air pollution analysis includes: accuracy, real time & prediction, spatio-temporal and decentralised analysis, we assert that these criteria can be improved using the proposed OSSELM. Special consideration is given to distributed ensemble to resolve spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed OSSELM produced impressive results compare to SVM ensemble for air pollution analysis in Auckland region.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Online scalable SVM ensemble learning method (OSSELM) for spatio-temporal air pollution analysis\",\"authors\":\"Shahid Ali, Simon Dacey\",\"doi\":\"10.5121/IJDKP.2017.7602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental air pollution studies fail to consider the fact that air pollution is a spatio-temporal problem. The volume and complexity of the data have created the need to explore various machine learning models, however, those models have advantages and disadvantages when applied to regional air pollution analysis, furthermore, most environmental problems are global distribution problems. This research addressed spatio-temporal problem using decentralized computational technique named Online Scalable SVM Ensemble Learning Method (OSSELM). Evaluation criteria for computational air pollution analysis includes: accuracy, real time & prediction, spatio-temporal and decentralised analysis, we assert that these criteria can be improved using the proposed OSSELM. Special consideration is given to distributed ensemble to resolve spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed OSSELM produced impressive results compare to SVM ensemble for air pollution analysis in Auckland region.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2017.7602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2017.7602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

环境空气污染研究没有考虑到空气污染是一个时空问题。数据的数量和复杂性创造了探索各种机器学习模型的需要,然而,这些模型在应用于区域空气污染分析时各有优缺点,此外,大多数环境问题都是全球分布问题。本研究采用分布式计算技术——在线可扩展支持向量机集成学习方法(OSSELM)来解决时空问题。计算空气污染分析的评估标准包括:准确性,实时和预测,时空和分散分析,我们断言这些标准可以使用所提出的OSSELM进行改进。特别考虑分布式集成以解决时空数据收集问题(即从分散在一个地理位置的多个监测站收集数据)。此外,实验结果表明,与SVM集合相比,所提出的OSSELM在奥克兰地区的空气污染分析中产生了令人印象深刻的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online scalable SVM ensemble learning method (OSSELM) for spatio-temporal air pollution analysis
Environmental air pollution studies fail to consider the fact that air pollution is a spatio-temporal problem. The volume and complexity of the data have created the need to explore various machine learning models, however, those models have advantages and disadvantages when applied to regional air pollution analysis, furthermore, most environmental problems are global distribution problems. This research addressed spatio-temporal problem using decentralized computational technique named Online Scalable SVM Ensemble Learning Method (OSSELM). Evaluation criteria for computational air pollution analysis includes: accuracy, real time & prediction, spatio-temporal and decentralised analysis, we assert that these criteria can be improved using the proposed OSSELM. Special consideration is given to distributed ensemble to resolve spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed OSSELM produced impressive results compare to SVM ensemble for air pollution analysis in Auckland region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信