{"title":"基于遗传算法的光伏电动汽车充电站","authors":"Pandey Sweta, Bhusnur Surekh, Anjum Naushin","doi":"10.26634/jps.10.3.19172","DOIUrl":null,"url":null,"abstract":"Detailed modeling of rapid charging Electric Vehicle (EV) stations connected to a hybrid grid-Renewable Energy Systems (RES), such as solar, mini-hydro, and wind, has been proposed. This assists in maximizing profit and lowering grid energy consumption. Since Photovoltaic (PV) systems exhibit several peaks under partial shading conditions; it is very difficult to track the global maximum point. Therefore, a broad search is needed to solve this nonlinear problem. Due to the variety of solutions, GA is preferred for solar MPPT. In comparison to the Genetic Algorithm (GA) and Maximum Power Point Tracking (MPPT) technique, the economic considerations obtained optimizes profit. It is also obvious that the proposed strategy lowers the grid's influence on the system network by capping the amount of electricity that may be exchanged between the system network and the grid. The voltage and current of PV array with GA method and GA MPPT technique results on the utility grid respectively.","PeriodicalId":421955,"journal":{"name":"i-manager's Journal on Power Systems Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic-Based Electric Vehicle Charging Station using GA Algorithm\",\"authors\":\"Pandey Sweta, Bhusnur Surekh, Anjum Naushin\",\"doi\":\"10.26634/jps.10.3.19172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed modeling of rapid charging Electric Vehicle (EV) stations connected to a hybrid grid-Renewable Energy Systems (RES), such as solar, mini-hydro, and wind, has been proposed. This assists in maximizing profit and lowering grid energy consumption. Since Photovoltaic (PV) systems exhibit several peaks under partial shading conditions; it is very difficult to track the global maximum point. Therefore, a broad search is needed to solve this nonlinear problem. Due to the variety of solutions, GA is preferred for solar MPPT. In comparison to the Genetic Algorithm (GA) and Maximum Power Point Tracking (MPPT) technique, the economic considerations obtained optimizes profit. It is also obvious that the proposed strategy lowers the grid's influence on the system network by capping the amount of electricity that may be exchanged between the system network and the grid. The voltage and current of PV array with GA method and GA MPPT technique results on the utility grid respectively.\",\"PeriodicalId\":421955,\"journal\":{\"name\":\"i-manager's Journal on Power Systems Engineering\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Power Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jps.10.3.19172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Power Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jps.10.3.19172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photovoltaic-Based Electric Vehicle Charging Station using GA Algorithm
Detailed modeling of rapid charging Electric Vehicle (EV) stations connected to a hybrid grid-Renewable Energy Systems (RES), such as solar, mini-hydro, and wind, has been proposed. This assists in maximizing profit and lowering grid energy consumption. Since Photovoltaic (PV) systems exhibit several peaks under partial shading conditions; it is very difficult to track the global maximum point. Therefore, a broad search is needed to solve this nonlinear problem. Due to the variety of solutions, GA is preferred for solar MPPT. In comparison to the Genetic Algorithm (GA) and Maximum Power Point Tracking (MPPT) technique, the economic considerations obtained optimizes profit. It is also obvious that the proposed strategy lowers the grid's influence on the system network by capping the amount of electricity that may be exchanged between the system network and the grid. The voltage and current of PV array with GA method and GA MPPT technique results on the utility grid respectively.