使用混合长短期记忆网络的智能手机三轴加速度计数据识别现实生活中的人类活动

Narit Hnoohom, A. Jitpattanakul, S. Mekruksavanich
{"title":"使用混合长短期记忆网络的智能手机三轴加速度计数据识别现实生活中的人类活动","authors":"Narit Hnoohom, A. Jitpattanakul, S. Mekruksavanich","doi":"10.1109/iSAI-NLP51646.2020.9376839","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) has an enthusiastic research field in time-series classification due to its variation of successful applications in various domains. The availability of affordable wearable devices have provided many challenging and interesting research HAR problems. Current researches suggest that deep learning approaches are suited to automated feature extraction from raw sensor data, instead of conventional machine learning approaches that reply on handcrafted features. Based on the recent success of Long Short-Term Memory (LSTM) networks for HAR domains, this work proposes a generic framework for accelerometer data based on LSTM networks for real-life HAR. Four hybrid LSTM networks have been comparatively studied on a public available real-life HAR dataset. Moreover, we take advantage of Bayesian optimization techniques for tuning hyperparameter of each LSTM networks. The experimental results indicate that the CNN-LSTM network surpasses other hybrid LSTM networks.","PeriodicalId":311014,"journal":{"name":"2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Real-life Human Activity Recognition with Tri-axial Accelerometer Data from Smartphone using Hybrid Long Short-Term Memory Networks\",\"authors\":\"Narit Hnoohom, A. Jitpattanakul, S. Mekruksavanich\",\"doi\":\"10.1109/iSAI-NLP51646.2020.9376839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition (HAR) has an enthusiastic research field in time-series classification due to its variation of successful applications in various domains. The availability of affordable wearable devices have provided many challenging and interesting research HAR problems. Current researches suggest that deep learning approaches are suited to automated feature extraction from raw sensor data, instead of conventional machine learning approaches that reply on handcrafted features. Based on the recent success of Long Short-Term Memory (LSTM) networks for HAR domains, this work proposes a generic framework for accelerometer data based on LSTM networks for real-life HAR. Four hybrid LSTM networks have been comparatively studied on a public available real-life HAR dataset. Moreover, we take advantage of Bayesian optimization techniques for tuning hyperparameter of each LSTM networks. The experimental results indicate that the CNN-LSTM network surpasses other hybrid LSTM networks.\",\"PeriodicalId\":311014,\"journal\":{\"name\":\"2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP51646.2020.9376839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP51646.2020.9376839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

人类活动识别(HAR)由于其在各个领域的成功应用而成为时间序列分类研究的热点。可穿戴设备的可用性提供了许多具有挑战性和有趣的研究HAR问题。目前的研究表明,深度学习方法适合于从原始传感器数据中自动提取特征,而不是传统的机器学习方法。基于最近长短期记忆(LSTM)网络在HAR领域的成功,本工作提出了一个基于LSTM网络的加速度计数据的通用框架,用于现实生活中的HAR。在一个公开可用的实际HAR数据集上对四种混合LSTM网络进行了比较研究。此外,我们利用贝叶斯优化技术对每个LSTM网络的超参数进行了调优。实验结果表明,CNN-LSTM网络优于其他混合LSTM网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-life Human Activity Recognition with Tri-axial Accelerometer Data from Smartphone using Hybrid Long Short-Term Memory Networks
Human activity recognition (HAR) has an enthusiastic research field in time-series classification due to its variation of successful applications in various domains. The availability of affordable wearable devices have provided many challenging and interesting research HAR problems. Current researches suggest that deep learning approaches are suited to automated feature extraction from raw sensor data, instead of conventional machine learning approaches that reply on handcrafted features. Based on the recent success of Long Short-Term Memory (LSTM) networks for HAR domains, this work proposes a generic framework for accelerometer data based on LSTM networks for real-life HAR. Four hybrid LSTM networks have been comparatively studied on a public available real-life HAR dataset. Moreover, we take advantage of Bayesian optimization techniques for tuning hyperparameter of each LSTM networks. The experimental results indicate that the CNN-LSTM network surpasses other hybrid LSTM networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信