基于rfid的室内定位实时、近理想全息图

Haonan Chen, Dong Wang
{"title":"基于rfid的室内定位实时、近理想全息图","authors":"Haonan Chen, Dong Wang","doi":"10.1145/3131672.3136994","DOIUrl":null,"url":null,"abstract":"Through the investigation of the mathematical model of hologram-based indoor localization system using RFID, this paper reveals two potential deficiencies about accuracy and gives the machine learning interpretation of the model. Exploiting the methods from machine learning and the thought of hierarchy, the output accuracy and the efficiency of the model can be further boosted. Simulation and experiment show that the enhanced model can halve mean error and attain 9x execution speed improvement.","PeriodicalId":424262,"journal":{"name":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time and Nearly Ideal Hologram for RFID-based Indoor Localization\",\"authors\":\"Haonan Chen, Dong Wang\",\"doi\":\"10.1145/3131672.3136994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through the investigation of the mathematical model of hologram-based indoor localization system using RFID, this paper reveals two potential deficiencies about accuracy and gives the machine learning interpretation of the model. Exploiting the methods from machine learning and the thought of hierarchy, the output accuracy and the efficiency of the model can be further boosted. Simulation and experiment show that the enhanced model can halve mean error and attain 9x execution speed improvement.\",\"PeriodicalId\":424262,\"journal\":{\"name\":\"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3131672.3136994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131672.3136994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对基于全息图的RFID室内定位系统数学模型的研究,揭示了该系统在精度上的两个潜在缺陷,并给出了该模型的机器学习解释。利用机器学习的方法和层次思想,可以进一步提高模型的输出精度和效率。仿真和实验表明,改进后的模型可以使平均误差减半,执行速度提高9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time and Nearly Ideal Hologram for RFID-based Indoor Localization
Through the investigation of the mathematical model of hologram-based indoor localization system using RFID, this paper reveals two potential deficiencies about accuracy and gives the machine learning interpretation of the model. Exploiting the methods from machine learning and the thought of hierarchy, the output accuracy and the efficiency of the model can be further boosted. Simulation and experiment show that the enhanced model can halve mean error and attain 9x execution speed improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信