小波矢量量化与匹配追踪

G. Davis, S. Mallat
{"title":"小波矢量量化与匹配追踪","authors":"G. Davis, S. Mallat","doi":"10.1109/WITS.1994.513886","DOIUrl":null,"url":null,"abstract":"To compute the optimal expansion of signals in redundant dictionary of waveforms is an NP complete problem. We introduce a greedy-algorithm, called matching pursuit, that performs a sub-optimal expansion. This algorithm can be interpreted as a shape-gain multistage vector quantization. The waveforms are chosen iteratively in order to best match the signal structures. Matching pursuits are general procedures used to compute adaptive signal representations. Applications to speech and image processing with dictionaries of Gabor functions are shown, in particular for the noise removal.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Wavelet vector quantization with matching pursuit\",\"authors\":\"G. Davis, S. Mallat\",\"doi\":\"10.1109/WITS.1994.513886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To compute the optimal expansion of signals in redundant dictionary of waveforms is an NP complete problem. We introduce a greedy-algorithm, called matching pursuit, that performs a sub-optimal expansion. This algorithm can be interpreted as a shape-gain multistage vector quantization. The waveforms are chosen iteratively in order to best match the signal structures. Matching pursuits are general procedures used to compute adaptive signal representations. Applications to speech and image processing with dictionaries of Gabor functions are shown, in particular for the noise removal.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

计算冗余波形字典中信号的最优展开是一个NP完全问题。我们引入了一种贪婪算法,称为匹配追踪,它执行次优扩展。该算法可以解释为形状增益多阶段矢量量化。波形是迭代选择的,以便最好地匹配信号结构。匹配追踪是用于计算自适应信号表示的一般过程。介绍了Gabor函数字典在语音和图像处理中的应用,特别是在去噪方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet vector quantization with matching pursuit
To compute the optimal expansion of signals in redundant dictionary of waveforms is an NP complete problem. We introduce a greedy-algorithm, called matching pursuit, that performs a sub-optimal expansion. This algorithm can be interpreted as a shape-gain multistage vector quantization. The waveforms are chosen iteratively in order to best match the signal structures. Matching pursuits are general procedures used to compute adaptive signal representations. Applications to speech and image processing with dictionaries of Gabor functions are shown, in particular for the noise removal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信