基于自适应滤波的稳态视觉诱发电位脑机接口系统高效脑电分类

Manjula Krishnappa, M. Anandaraju
{"title":"基于自适应滤波的稳态视觉诱发电位脑机接口系统高效脑电分类","authors":"Manjula Krishnappa, M. Anandaraju","doi":"10.11591/ijres.v12.i2.pp215-221","DOIUrl":null,"url":null,"abstract":"Brain-computer interfaces (BCIs) system is a link to generate a communication between disable people and physical devices. Thus, steady state visually evoked potential (SSVEP) is analysed to improve performance efficiency of BCIs system using multi-class classification process. Thus, an adaptive filtering-based component analysis (AFCA) method is adopted to examine SSVEP from multiple-channel electroencephalography (EEG) signals for BCIs system efficiency enhancement. Further, flickering at varied frequencies is used in a visual stimulation process to examine user intentions and brain responses. A detailed solution for optimization problem and efficient feature extraction is also presented. Here, a large SSVEP dataset is utilized which contains 256 channel EEG data. Experimental results are evaluated in terms of classification accuracy and information transfer rate to measure efficiency of proposed SSVEP extraction method against varied traditional SSVEP-based BCIs. The average information transfer rate (ITR) results are 308.23 bits per minute and classification accuracy is 93.48% using proposed AFCA method. Thus, proposed AFCA method shows decent performance in comparison with state-of-art-SSVEP extraction methods.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive filters based efficient EEG classification for steady state visually evoked potential based BCI system\",\"authors\":\"Manjula Krishnappa, M. Anandaraju\",\"doi\":\"10.11591/ijres.v12.i2.pp215-221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interfaces (BCIs) system is a link to generate a communication between disable people and physical devices. Thus, steady state visually evoked potential (SSVEP) is analysed to improve performance efficiency of BCIs system using multi-class classification process. Thus, an adaptive filtering-based component analysis (AFCA) method is adopted to examine SSVEP from multiple-channel electroencephalography (EEG) signals for BCIs system efficiency enhancement. Further, flickering at varied frequencies is used in a visual stimulation process to examine user intentions and brain responses. A detailed solution for optimization problem and efficient feature extraction is also presented. Here, a large SSVEP dataset is utilized which contains 256 channel EEG data. Experimental results are evaluated in terms of classification accuracy and information transfer rate to measure efficiency of proposed SSVEP extraction method against varied traditional SSVEP-based BCIs. The average information transfer rate (ITR) results are 308.23 bits per minute and classification accuracy is 93.48% using proposed AFCA method. Thus, proposed AFCA method shows decent performance in comparison with state-of-art-SSVEP extraction methods.\",\"PeriodicalId\":158991,\"journal\":{\"name\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijres.v12.i2.pp215-221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v12.i2.pp215-221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(bci)系统是残疾人与物理设备之间产生通信的纽带。为此,分析稳态视觉诱发电位(SSVEP),利用多类分类过程提高脑机接口系统的性能效率。因此,采用基于自适应滤波的分量分析(AFCA)方法从多通道脑电图(EEG)信号中检测SSVEP,以提高脑机接口系统效率。此外,在视觉刺激过程中使用不同频率的闪烁来检查用户意图和大脑反应。给出了优化问题和高效特征提取的详细解决方案。本文使用了一个包含256通道EEG数据的大型SSVEP数据集。通过对实验结果的分类精度和信息传输率进行评价,以衡量所提出的SSVEP提取方法与各种传统的基于SSVEP的脑机接口的效率。该方法的平均信息传输率(ITR)为308.23 bits / min,分类准确率为93.48%。因此,与目前最先进的ssvep提取方法相比,所提出的AFCA方法表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive filters based efficient EEG classification for steady state visually evoked potential based BCI system
Brain-computer interfaces (BCIs) system is a link to generate a communication between disable people and physical devices. Thus, steady state visually evoked potential (SSVEP) is analysed to improve performance efficiency of BCIs system using multi-class classification process. Thus, an adaptive filtering-based component analysis (AFCA) method is adopted to examine SSVEP from multiple-channel electroencephalography (EEG) signals for BCIs system efficiency enhancement. Further, flickering at varied frequencies is used in a visual stimulation process to examine user intentions and brain responses. A detailed solution for optimization problem and efficient feature extraction is also presented. Here, a large SSVEP dataset is utilized which contains 256 channel EEG data. Experimental results are evaluated in terms of classification accuracy and information transfer rate to measure efficiency of proposed SSVEP extraction method against varied traditional SSVEP-based BCIs. The average information transfer rate (ITR) results are 308.23 bits per minute and classification accuracy is 93.48% using proposed AFCA method. Thus, proposed AFCA method shows decent performance in comparison with state-of-art-SSVEP extraction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信