{"title":"意见垃圾邮件检测在Web论坛","authors":"Yu-Ren Chen, Hsin-Hsi Chen","doi":"10.1145/2766462.2767766","DOIUrl":null,"url":null,"abstract":"In this paper, a real case study on opinion spammer detection in web forum is presented. We explore user profiles, maximum spamicity of first posts of users, burstiness of registration of user accounts, and frequent poster set to build a model with SVM with RBF kernel and frequent itemset mining. The proposed model achieves 0.6753 precision, 0.6190 recall, and 0.6460 F1 score. The result is promising because the ratio of opinion spammers in the test set is only 0.98%.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Opinion Spammer Detection in Web Forum\",\"authors\":\"Yu-Ren Chen, Hsin-Hsi Chen\",\"doi\":\"10.1145/2766462.2767766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a real case study on opinion spammer detection in web forum is presented. We explore user profiles, maximum spamicity of first posts of users, burstiness of registration of user accounts, and frequent poster set to build a model with SVM with RBF kernel and frequent itemset mining. The proposed model achieves 0.6753 precision, 0.6190 recall, and 0.6460 F1 score. The result is promising because the ratio of opinion spammers in the test set is only 0.98%.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, a real case study on opinion spammer detection in web forum is presented. We explore user profiles, maximum spamicity of first posts of users, burstiness of registration of user accounts, and frequent poster set to build a model with SVM with RBF kernel and frequent itemset mining. The proposed model achieves 0.6753 precision, 0.6190 recall, and 0.6460 F1 score. The result is promising because the ratio of opinion spammers in the test set is only 0.98%.