压缩视频中粗到精的运动区域分割

Yue Chen, I. Bajić, Parvaneh Saeedi
{"title":"压缩视频中粗到精的运动区域分割","authors":"Yue Chen, I. Bajić, Parvaneh Saeedi","doi":"10.1109/WIAMIS.2009.5031428","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a coarse-to-fine segmentation method for extracting moving regions from compressed video. First, motion vectors are clustered to provide a coarse segmentation of moving regions at block level. Second, boundaries between moving regions are identified, and finally, a fine segmentation is performed within boundary regions using edge and color information. Experimental results show that the proposed method can segment moving regions fairly accurately, with sensitivity of 85% or higher, and specificity of over 95%.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Coarse-to-fine moving region segmentation in compressed video\",\"authors\":\"Yue Chen, I. Bajić, Parvaneh Saeedi\",\"doi\":\"10.1109/WIAMIS.2009.5031428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a coarse-to-fine segmentation method for extracting moving regions from compressed video. First, motion vectors are clustered to provide a coarse segmentation of moving regions at block level. Second, boundaries between moving regions are identified, and finally, a fine segmentation is performed within boundary regions using edge and color information. Experimental results show that the proposed method can segment moving regions fairly accurately, with sensitivity of 85% or higher, and specificity of over 95%.\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种从压缩视频中提取运动区域的从粗到精分割方法。首先,对运动向量进行聚类,在块水平上对运动区域进行粗分割。其次,识别运动区域之间的边界,最后利用边缘和颜色信息在边界区域内进行精细分割。实验结果表明,该方法可以较准确地分割运动区域,灵敏度达到85%以上,特异度达到95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse-to-fine moving region segmentation in compressed video
In this paper, we propose a coarse-to-fine segmentation method for extracting moving regions from compressed video. First, motion vectors are clustered to provide a coarse segmentation of moving regions at block level. Second, boundaries between moving regions are identified, and finally, a fine segmentation is performed within boundary regions using edge and color information. Experimental results show that the proposed method can segment moving regions fairly accurately, with sensitivity of 85% or higher, and specificity of over 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信