深度4次齐次算术公式的超多项式下界

N. Kayal, N. Limaye, Chandan Saha, S. Srinivasan
{"title":"深度4次齐次算术公式的超多项式下界","authors":"N. Kayal, N. Limaye, Chandan Saha, S. Srinivasan","doi":"10.1145/2591796.2591823","DOIUrl":null,"url":null,"abstract":"We show that any depth-4 homogeneous arithmetic formula computing the Iterated Matrix Multiplication polynomial IMMn,d -- the (1, 1)-th entry of the product of d generic n × n matrices -- has size nΩ(log n), if d = Ω (log2 n). More-over, any depth-4 homogeneous formula computing the determinant polynomial Detn -- the determinant of a generic n × n matrix -- has size nΩ(log n).","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Super-polynomial lower bounds for depth-4 homogeneous arithmetic formulas\",\"authors\":\"N. Kayal, N. Limaye, Chandan Saha, S. Srinivasan\",\"doi\":\"10.1145/2591796.2591823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any depth-4 homogeneous arithmetic formula computing the Iterated Matrix Multiplication polynomial IMMn,d -- the (1, 1)-th entry of the product of d generic n × n matrices -- has size nΩ(log n), if d = Ω (log2 n). More-over, any depth-4 homogeneous formula computing the determinant polynomial Detn -- the determinant of a generic n × n matrix -- has size nΩ(log n).\",\"PeriodicalId\":123501,\"journal\":{\"name\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591796.2591823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们证明,计算迭代矩阵乘法多项式imn,d——d个一般n × n矩阵的乘积的(1,1)第1项——的任何深度4齐次算术公式的大小为nΩ(log n),如果d = Ω(log2n)。此外,计算行列式多项式Detn——一般n × n矩阵的行列式——的任何深度4齐次公式的大小为nΩ(log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-polynomial lower bounds for depth-4 homogeneous arithmetic formulas
We show that any depth-4 homogeneous arithmetic formula computing the Iterated Matrix Multiplication polynomial IMMn,d -- the (1, 1)-th entry of the product of d generic n × n matrices -- has size nΩ(log n), if d = Ω (log2 n). More-over, any depth-4 homogeneous formula computing the determinant polynomial Detn -- the determinant of a generic n × n matrix -- has size nΩ(log n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信