一个som辅助的二进制数据可视化

M. Trutschl, P. Kilgore, Billy A. Tran, Hyun-Woong Nam, Eric Clifford, Adesewa Akande, U. Cvek
{"title":"一个som辅助的二进制数据可视化","authors":"M. Trutschl, P. Kilgore, Billy A. Tran, Hyun-Woong Nam, Eric Clifford, Adesewa Akande, U. Cvek","doi":"10.1109/IV56949.2022.00072","DOIUrl":null,"url":null,"abstract":"Venn diagrams are a useful method of visualizing Boolean data; however, their data aggregation causes fine detail about the data to be lost. In this paper, we present a method of augmenting Venn diagrams, so that they may depict similarity relationships among individual records in the data using the Self-Organizing Map. We applied this method to a synthetic data set and an empirical proteomics data set. We found that we were able to separate data within each region of the Venn diagram based on dimensional values, and that we can highlight the clustering of $p$-values in the empirical set.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VennSOM: A SOM-Assisted Visualization of Binary Data\",\"authors\":\"M. Trutschl, P. Kilgore, Billy A. Tran, Hyun-Woong Nam, Eric Clifford, Adesewa Akande, U. Cvek\",\"doi\":\"10.1109/IV56949.2022.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Venn diagrams are a useful method of visualizing Boolean data; however, their data aggregation causes fine detail about the data to be lost. In this paper, we present a method of augmenting Venn diagrams, so that they may depict similarity relationships among individual records in the data using the Self-Organizing Map. We applied this method to a synthetic data set and an empirical proteomics data set. We found that we were able to separate data within each region of the Venn diagram based on dimensional values, and that we can highlight the clustering of $p$-values in the empirical set.\",\"PeriodicalId\":153161,\"journal\":{\"name\":\"2022 26th International Conference Information Visualisation (IV)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV56949.2022.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

维恩图是可视化布尔数据的一种有用方法;但是,它们的数据聚合会导致丢失有关数据的详细信息。在本文中,我们提出了一种增加维恩图的方法,使它们可以用自组织图来描述数据中各个记录之间的相似关系。我们将此方法应用于合成数据集和经验蛋白质组学数据集。我们发现,我们能够根据维度值在维恩图的每个区域内分离数据,并且我们可以突出显示经验集中$p$值的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VennSOM: A SOM-Assisted Visualization of Binary Data
Venn diagrams are a useful method of visualizing Boolean data; however, their data aggregation causes fine detail about the data to be lost. In this paper, we present a method of augmenting Venn diagrams, so that they may depict similarity relationships among individual records in the data using the Self-Organizing Map. We applied this method to a synthetic data set and an empirical proteomics data set. We found that we were able to separate data within each region of the Venn diagram based on dimensional values, and that we can highlight the clustering of $p$-values in the empirical set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信