中值金字塔树分解及其在信号去噪中的应用

V. Melnik, K. Egiazarian, I. Shmulevich, P. Kuosmanen
{"title":"中值金字塔树分解及其在信号去噪中的应用","authors":"V. Melnik, K. Egiazarian, I. Shmulevich, P. Kuosmanen","doi":"10.1109/ICASSP.2000.861879","DOIUrl":null,"url":null,"abstract":"We propose to generate a library of median pyramidal decompositions organized as a tree. It is shown that the best decomposition on this tree can be chosen using the techniques developed in wavelet theory. Based on the tree of decompositions, a denoising algorithm is introduced. Numerical simulations have shown that the proposed algorithm is more effective for signal denoising than the method based on the traditional median pyramidal transform.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A tree of median pyramidal decompositions with an application to signal denoising\",\"authors\":\"V. Melnik, K. Egiazarian, I. Shmulevich, P. Kuosmanen\",\"doi\":\"10.1109/ICASSP.2000.861879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to generate a library of median pyramidal decompositions organized as a tree. It is shown that the best decomposition on this tree can be chosen using the techniques developed in wavelet theory. Based on the tree of decompositions, a denoising algorithm is introduced. Numerical simulations have shown that the proposed algorithm is more effective for signal denoising than the method based on the traditional median pyramidal transform.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.861879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们建议生成一个以树的形式组织的中位金字塔分解库。结果表明,利用小波理论中发展的技术,可以在该树上选择最佳分解。介绍了一种基于分解树的噪声去噪算法。数值仿真结果表明,该算法比传统的中值金字塔变换方法对信号去噪更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tree of median pyramidal decompositions with an application to signal denoising
We propose to generate a library of median pyramidal decompositions organized as a tree. It is shown that the best decomposition on this tree can be chosen using the techniques developed in wavelet theory. Based on the tree of decompositions, a denoising algorithm is introduced. Numerical simulations have shown that the proposed algorithm is more effective for signal denoising than the method based on the traditional median pyramidal transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信