{"title":"防止更新的匿名数据中的对等攻击","authors":"Yeye He, Siddharth Barman, J. Naughton","doi":"10.1109/ICDE.2011.5767924","DOIUrl":null,"url":null,"abstract":"In comparison to the extensive body of existing work considering publish-once, static anonymization, dynamic anonymization is less well studied. Previous work, most notably m-invariance, has made considerable progress in devising a scheme that attempts to prevent individual records from being associated with too few sensitive values. We show, however, that in the presence of updates, even an m-invariant table can be exploited by a new type of attack we call the “equivalence-attack.” To deal with the equivalence attack, we propose a graph-based anonymization algorithm that leverages solutions to the classic “min-cut/max-flow” problem, and demonstrate with experiments that our algorithm is efficient and effective in preventing equivalence attacks.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Preventing equivalence attacks in updated, anonymized data\",\"authors\":\"Yeye He, Siddharth Barman, J. Naughton\",\"doi\":\"10.1109/ICDE.2011.5767924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In comparison to the extensive body of existing work considering publish-once, static anonymization, dynamic anonymization is less well studied. Previous work, most notably m-invariance, has made considerable progress in devising a scheme that attempts to prevent individual records from being associated with too few sensitive values. We show, however, that in the presence of updates, even an m-invariant table can be exploited by a new type of attack we call the “equivalence-attack.” To deal with the equivalence attack, we propose a graph-based anonymization algorithm that leverages solutions to the classic “min-cut/max-flow” problem, and demonstrate with experiments that our algorithm is efficient and effective in preventing equivalence attacks.\",\"PeriodicalId\":332374,\"journal\":{\"name\":\"2011 IEEE 27th International Conference on Data Engineering\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 27th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2011.5767924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preventing equivalence attacks in updated, anonymized data
In comparison to the extensive body of existing work considering publish-once, static anonymization, dynamic anonymization is less well studied. Previous work, most notably m-invariance, has made considerable progress in devising a scheme that attempts to prevent individual records from being associated with too few sensitive values. We show, however, that in the presence of updates, even an m-invariant table can be exploited by a new type of attack we call the “equivalence-attack.” To deal with the equivalence attack, we propose a graph-based anonymization algorithm that leverages solutions to the classic “min-cut/max-flow” problem, and demonstrate with experiments that our algorithm is efficient and effective in preventing equivalence attacks.