基于自适应滤波和扩展滑模观测器的SPMSM参数估计

Hyoung-Woo Kim, Young-Woo Kwon, Sung-Mun Park, Joon‐Young Choi
{"title":"基于自适应滤波和扩展滑模观测器的SPMSM参数估计","authors":"Hyoung-Woo Kim, Young-Woo Kwon, Sung-Mun Park, Joon‐Young Choi","doi":"10.1109/ICCA.2019.8899959","DOIUrl":null,"url":null,"abstract":"We propose a parameter estimation algorithm for surface-mounted permanent magnet synchronous motors (SPMSMs) using normalized least mean square (NLMS) adaptive filter and extended sliding-mode mechanical parameter observer (ESMMPO). The adaptive filter estimates electrical parameters, stator inductance, resistance, and rotor linkage flux. The ESMMPO estimates the system disturbance, from which mechanical parameters are extracted. The key feature of the proposed algorithm is that the two estimation algorithms for electrical and mechanical parameters are effectively integrated into a single framework, and the estimated rotor linkage flux is used for the system disturbance estimation of the ESMMPO in real time, which results in the accuracy improvement of the mechanical parameters. Performing extensive simulation experiments for the proposed algorithm, we verify the system parameter estimation performance for SPMSMs.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameter Estimation of SPMSM Using Adaptive Filter and Extended Sliding-Mode Observer\",\"authors\":\"Hyoung-Woo Kim, Young-Woo Kwon, Sung-Mun Park, Joon‐Young Choi\",\"doi\":\"10.1109/ICCA.2019.8899959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a parameter estimation algorithm for surface-mounted permanent magnet synchronous motors (SPMSMs) using normalized least mean square (NLMS) adaptive filter and extended sliding-mode mechanical parameter observer (ESMMPO). The adaptive filter estimates electrical parameters, stator inductance, resistance, and rotor linkage flux. The ESMMPO estimates the system disturbance, from which mechanical parameters are extracted. The key feature of the proposed algorithm is that the two estimation algorithms for electrical and mechanical parameters are effectively integrated into a single framework, and the estimated rotor linkage flux is used for the system disturbance estimation of the ESMMPO in real time, which results in the accuracy improvement of the mechanical parameters. Performing extensive simulation experiments for the proposed algorithm, we verify the system parameter estimation performance for SPMSMs.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于归一化最小均方(NLMS)自适应滤波和扩展滑模机械参数观测器(ESMMPO)的表面贴装永磁同步电机(SPMSMs)参数估计算法。自适应滤波器估计电参数、定子电感、电阻和转子连杆磁链。ESMMPO估计系统扰动,并从中提取机械参数。该算法的关键特点是将电气参数和机械参数两种估计算法有效地集成到一个框架中,并将估计的转子连杆磁链实时用于ESMMPO的系统扰动估计,从而提高了机械参数的精度。对所提出的算法进行了大量的仿真实验,验证了spmsm系统参数估计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation of SPMSM Using Adaptive Filter and Extended Sliding-Mode Observer
We propose a parameter estimation algorithm for surface-mounted permanent magnet synchronous motors (SPMSMs) using normalized least mean square (NLMS) adaptive filter and extended sliding-mode mechanical parameter observer (ESMMPO). The adaptive filter estimates electrical parameters, stator inductance, resistance, and rotor linkage flux. The ESMMPO estimates the system disturbance, from which mechanical parameters are extracted. The key feature of the proposed algorithm is that the two estimation algorithms for electrical and mechanical parameters are effectively integrated into a single framework, and the estimated rotor linkage flux is used for the system disturbance estimation of the ESMMPO in real time, which results in the accuracy improvement of the mechanical parameters. Performing extensive simulation experiments for the proposed algorithm, we verify the system parameter estimation performance for SPMSMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信