使用无奖励探索性数据的离线模仿学习

Hao Wang, Dawei Feng, Bo Ding, W. Li
{"title":"使用无奖励探索性数据的离线模仿学习","authors":"Hao Wang, Dawei Feng, Bo Ding, W. Li","doi":"10.1145/3579654.3579753","DOIUrl":null,"url":null,"abstract":"Offline imitative learning(OIL) is often used to solve complex continuous decision-making tasks. For these tasks such as robot control, automatic driving and etc., it is either difficult to design an effective reward for learning or very expensive and time-consuming for agents to collect data interactively with the environment. However, the data used in previous OIL methods are all gathered by reinforcement learning algorithms guided by task-specific rewards, which is not a true reward-free premise and still suffers from the problem of designing an effective reward function in real tasks. To this end, we propose the reward-free exploratory data driven offline imitation learning (ExDOIL) framework. ExDOIL first trains an unsupervised reinforcement learning agent by interacting with the environment, and collects enough unsupervised exploration data during training; Then, a task independent yet simple and efficient reward function is used to relabel the collected data; Finally, an agent is trained to imitate the expert to complete the task through a conventional RL algorithm such as TD3. Extensive experiments on continuous control tasks demonstrate that the proposed framework can achieve better imitation performance(28% higher episode returns on average) comparing with previous SOTA method(ORIL) without any task-specific rewards.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline Imitation Learning Using Reward-free Exploratory Data\",\"authors\":\"Hao Wang, Dawei Feng, Bo Ding, W. Li\",\"doi\":\"10.1145/3579654.3579753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offline imitative learning(OIL) is often used to solve complex continuous decision-making tasks. For these tasks such as robot control, automatic driving and etc., it is either difficult to design an effective reward for learning or very expensive and time-consuming for agents to collect data interactively with the environment. However, the data used in previous OIL methods are all gathered by reinforcement learning algorithms guided by task-specific rewards, which is not a true reward-free premise and still suffers from the problem of designing an effective reward function in real tasks. To this end, we propose the reward-free exploratory data driven offline imitation learning (ExDOIL) framework. ExDOIL first trains an unsupervised reinforcement learning agent by interacting with the environment, and collects enough unsupervised exploration data during training; Then, a task independent yet simple and efficient reward function is used to relabel the collected data; Finally, an agent is trained to imitate the expert to complete the task through a conventional RL algorithm such as TD3. Extensive experiments on continuous control tasks demonstrate that the proposed framework can achieve better imitation performance(28% higher episode returns on average) comparing with previous SOTA method(ORIL) without any task-specific rewards.\",\"PeriodicalId\":146783,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579654.3579753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离线模仿学习(OIL)常用于解决复杂的连续决策任务。对于机器人控制、自动驾驶等任务,要么难以设计有效的学习奖励,要么智能体与环境交互收集数据非常昂贵和耗时。然而,以往的OIL方法使用的数据都是由任务特定奖励引导的强化学习算法收集的,这并不是真正的无奖励前提,在实际任务中仍然存在设计有效奖励函数的问题。为此,我们提出了无奖励的探索性数据驱动的离线模仿学习(ExDOIL)框架。ExDOIL首先通过与环境的交互训练无监督强化学习代理,并在训练过程中收集足够的无监督探索数据;然后,使用任务无关但简单有效的奖励函数对收集到的数据进行重新标注;最后,通过传统的RL算法(如TD3)训练一个代理来模仿专家完成任务。在连续控制任务上的大量实验表明,与之前没有任何任务特定奖励的SOTA方法(ORIL)相比,所提出的框架可以获得更好的模仿性能(平均高28%的剧集回报)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offline Imitation Learning Using Reward-free Exploratory Data
Offline imitative learning(OIL) is often used to solve complex continuous decision-making tasks. For these tasks such as robot control, automatic driving and etc., it is either difficult to design an effective reward for learning or very expensive and time-consuming for agents to collect data interactively with the environment. However, the data used in previous OIL methods are all gathered by reinforcement learning algorithms guided by task-specific rewards, which is not a true reward-free premise and still suffers from the problem of designing an effective reward function in real tasks. To this end, we propose the reward-free exploratory data driven offline imitation learning (ExDOIL) framework. ExDOIL first trains an unsupervised reinforcement learning agent by interacting with the environment, and collects enough unsupervised exploration data during training; Then, a task independent yet simple and efficient reward function is used to relabel the collected data; Finally, an agent is trained to imitate the expert to complete the task through a conventional RL algorithm such as TD3. Extensive experiments on continuous control tasks demonstrate that the proposed framework can achieve better imitation performance(28% higher episode returns on average) comparing with previous SOTA method(ORIL) without any task-specific rewards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信