粒子群分布算法的估计:融合粒子群算法和eda算法的优点

C. Ahn, Hyun-Tae Kim
{"title":"粒子群分布算法的估计:融合粒子群算法和eda算法的优点","authors":"C. Ahn, Hyun-Tae Kim","doi":"10.1145/1569901.1570178","DOIUrl":null,"url":null,"abstract":"This paper presents a framework of estimation of particle swarm distribution algorithms (EPSDAs). The aim lies in effectively combining particle swarm optimization (PSO) with estimation of distribution algorithms (EDAs) without losing on their unique features. To exhibit its practicability, an extended compact particle swarm optimization (EcPSO) is developed along the lines of the suggested framework. Empirical results have adduced grounds for its effectiveness.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation of particle swarm distribution algorithms: bringing together the strengths of PSO and EDAs\",\"authors\":\"C. Ahn, Hyun-Tae Kim\",\"doi\":\"10.1145/1569901.1570178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework of estimation of particle swarm distribution algorithms (EPSDAs). The aim lies in effectively combining particle swarm optimization (PSO) with estimation of distribution algorithms (EDAs) without losing on their unique features. To exhibit its practicability, an extended compact particle swarm optimization (EcPSO) is developed along the lines of the suggested framework. Empirical results have adduced grounds for its effectiveness.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种粒子群分布算法(EPSDAs)估计框架。其目的在于将粒子群算法与分布估计算法有效地结合起来,同时又不失其各自的特点。为了证明该算法的实用性,在此基础上提出了一种扩展的紧凑粒子群优化算法。实证结果为其有效性提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of particle swarm distribution algorithms: bringing together the strengths of PSO and EDAs
This paper presents a framework of estimation of particle swarm distribution algorithms (EPSDAs). The aim lies in effectively combining particle swarm optimization (PSO) with estimation of distribution algorithms (EDAs) without losing on their unique features. To exhibit its practicability, an extended compact particle swarm optimization (EcPSO) is developed along the lines of the suggested framework. Empirical results have adduced grounds for its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信