{"title":"OCR联合特征与分类器设计","authors":"Dz-Mou Jung, G. Nagy","doi":"10.1109/ICDAR.1995.602113","DOIUrl":null,"url":null,"abstract":"Shift-invariant, custom designed n-tuple features are combined with a probabilistic decision tree to classify isolated printed characters. The feature probabilities are estimated using a novel compound Bayesian procedure in order to delay the fall-off in classification accuracy with tree size due to a small sample set. On a ten-class confusion set of eight-point characters, the method yields error rates under 1% with only 3 training samples per class.","PeriodicalId":273519,"journal":{"name":"Proceedings of 3rd International Conference on Document Analysis and Recognition","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Joint feature and classifier design for OCR\",\"authors\":\"Dz-Mou Jung, G. Nagy\",\"doi\":\"10.1109/ICDAR.1995.602113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shift-invariant, custom designed n-tuple features are combined with a probabilistic decision tree to classify isolated printed characters. The feature probabilities are estimated using a novel compound Bayesian procedure in order to delay the fall-off in classification accuracy with tree size due to a small sample set. On a ten-class confusion set of eight-point characters, the method yields error rates under 1% with only 3 training samples per class.\",\"PeriodicalId\":273519,\"journal\":{\"name\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1995.602113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1995.602113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shift-invariant, custom designed n-tuple features are combined with a probabilistic decision tree to classify isolated printed characters. The feature probabilities are estimated using a novel compound Bayesian procedure in order to delay the fall-off in classification accuracy with tree size due to a small sample set. On a ten-class confusion set of eight-point characters, the method yields error rates under 1% with only 3 training samples per class.