奇偶螺旋:对多维存储系统中单维故障的有效保护

Xun Jian, Vilas Sridharan, Rakesh Kumar
{"title":"奇偶螺旋:对多维存储系统中单维故障的有效保护","authors":"Xun Jian, Vilas Sridharan, Rakesh Kumar","doi":"10.1109/HPCA.2016.7446094","DOIUrl":null,"url":null,"abstract":"Emerging die-stacked DRAMs provide several factors higher bandwidth and energy efficiency than 2D DRAMs, making them excellent candidates for future memory systems. To be deployed in server and high-performance computing systems, however, die-stacked DRAMs need to provide equivalent or better reliability than existing 2D DRAMs. This includes protecting against channel and die faults, which have been observed in existing 2D DRAM production systems. In this paper, we observe that memory subsystems can be viewed as a multi-dimensional collection of memory banks in which faults generally affect memory banks that lie along a single dimension. For instance, in die-stacked DRAMs, a die consists of a group of DRAM banks that lie in a horizontal plane while a channel consists of a vertical group of banks spanning across multiple dies. We exploit this fault behavior to propose Parity Helix to efficiently protect against single-dimensional faults in multi-dimensional memory systems. Parity Helix shares the same error correction resources across all dimensions to minimize error correction overheads. For die-stacked DRAMs, our evaluation shows that compared to a straightforward extension of previous schemes, Parity Helix increases memory capacity by 16.7%, reduces memory energy per program access by 21%, on average, and by up to 45%.","PeriodicalId":417994,"journal":{"name":"2016 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Parity Helix: Efficient protection for single-dimensional faults in multi-dimensional memory systems\",\"authors\":\"Xun Jian, Vilas Sridharan, Rakesh Kumar\",\"doi\":\"10.1109/HPCA.2016.7446094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging die-stacked DRAMs provide several factors higher bandwidth and energy efficiency than 2D DRAMs, making them excellent candidates for future memory systems. To be deployed in server and high-performance computing systems, however, die-stacked DRAMs need to provide equivalent or better reliability than existing 2D DRAMs. This includes protecting against channel and die faults, which have been observed in existing 2D DRAM production systems. In this paper, we observe that memory subsystems can be viewed as a multi-dimensional collection of memory banks in which faults generally affect memory banks that lie along a single dimension. For instance, in die-stacked DRAMs, a die consists of a group of DRAM banks that lie in a horizontal plane while a channel consists of a vertical group of banks spanning across multiple dies. We exploit this fault behavior to propose Parity Helix to efficiently protect against single-dimensional faults in multi-dimensional memory systems. Parity Helix shares the same error correction resources across all dimensions to minimize error correction overheads. For die-stacked DRAMs, our evaluation shows that compared to a straightforward extension of previous schemes, Parity Helix increases memory capacity by 16.7%, reduces memory energy per program access by 21%, on average, and by up to 45%.\",\"PeriodicalId\":417994,\"journal\":{\"name\":\"2016 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2016.7446094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2016.7446094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

与2D dram相比,新兴的叠层dram提供了更高的带宽和能效,使其成为未来存储系统的优秀候选器件。然而,为了部署在服务器和高性能计算系统中,模堆叠dram需要提供与现有2D dram相当或更好的可靠性。这包括防止在现有2D DRAM生产系统中观察到的通道和芯片故障。在本文中,我们观察到存储子系统可以被视为存储库的多维集合,其中故障通常影响沿单个维度的存储库。例如,在模堆叠DRAM中,一个模组由一组位于水平面的DRAM组组成,而一个通道由跨越多个模组的垂直组组成。我们利用这种错误行为提出奇偶螺旋来有效地防止多维存储系统中的一维错误。奇偶螺旋在所有维度上共享相同的纠错资源,以最大限度地减少纠错开销。对于模叠dram,我们的评估表明,与之前方案的直接扩展相比,奇偶螺旋增加了16.7%的内存容量,平均每个程序访问减少了21%的内存能量,最高可达45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parity Helix: Efficient protection for single-dimensional faults in multi-dimensional memory systems
Emerging die-stacked DRAMs provide several factors higher bandwidth and energy efficiency than 2D DRAMs, making them excellent candidates for future memory systems. To be deployed in server and high-performance computing systems, however, die-stacked DRAMs need to provide equivalent or better reliability than existing 2D DRAMs. This includes protecting against channel and die faults, which have been observed in existing 2D DRAM production systems. In this paper, we observe that memory subsystems can be viewed as a multi-dimensional collection of memory banks in which faults generally affect memory banks that lie along a single dimension. For instance, in die-stacked DRAMs, a die consists of a group of DRAM banks that lie in a horizontal plane while a channel consists of a vertical group of banks spanning across multiple dies. We exploit this fault behavior to propose Parity Helix to efficiently protect against single-dimensional faults in multi-dimensional memory systems. Parity Helix shares the same error correction resources across all dimensions to minimize error correction overheads. For die-stacked DRAMs, our evaluation shows that compared to a straightforward extension of previous schemes, Parity Helix increases memory capacity by 16.7%, reduces memory energy per program access by 21%, on average, and by up to 45%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信