Bo Liu, Heng Li, Yutao Zhou, Yuqing Peng, A. Elazab, Changmiao Wang
{"title":"基于级联条件Wasserstein gan的遥感图像超分辨方法","authors":"Bo Liu, Heng Li, Yutao Zhou, Yuqing Peng, A. Elazab, Changmiao Wang","doi":"10.1109/ICICSP50920.2020.9232066","DOIUrl":null,"url":null,"abstract":"High-resolution (HR) remote sensing imagery is quite beneficial for subsequent interpretation. Obtaining HR images can be achieved by upgrading the imaging device. Yet, the cost to perform this task is very huge. Thus, it is necessary to obtain HR images from low-resolution (LR) ones. In the literature, the super-resolution image reconstruction methods based on deep learning have unparalleled advantages in comparison to traditional reconstruction methods. This work is inspired by these current mainstream methods and proposes a novel cascaded conditional Wasserstein generative adversarial network (CCWGAN) architecture with the residual dense block to generate high quality remote sensing images. We validate the proposed method on the NWPU VHR-10 dataset. Experimental results show our CCWGAN method has superior performance compared with the state-of-the-art GAN methods.","PeriodicalId":117760,"journal":{"name":"2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Super Resolution Method for Remote Sensing Images Based on Cascaded Conditional Wasserstein GANs\",\"authors\":\"Bo Liu, Heng Li, Yutao Zhou, Yuqing Peng, A. Elazab, Changmiao Wang\",\"doi\":\"10.1109/ICICSP50920.2020.9232066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution (HR) remote sensing imagery is quite beneficial for subsequent interpretation. Obtaining HR images can be achieved by upgrading the imaging device. Yet, the cost to perform this task is very huge. Thus, it is necessary to obtain HR images from low-resolution (LR) ones. In the literature, the super-resolution image reconstruction methods based on deep learning have unparalleled advantages in comparison to traditional reconstruction methods. This work is inspired by these current mainstream methods and proposes a novel cascaded conditional Wasserstein generative adversarial network (CCWGAN) architecture with the residual dense block to generate high quality remote sensing images. We validate the proposed method on the NWPU VHR-10 dataset. Experimental results show our CCWGAN method has superior performance compared with the state-of-the-art GAN methods.\",\"PeriodicalId\":117760,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICSP50920.2020.9232066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP50920.2020.9232066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Super Resolution Method for Remote Sensing Images Based on Cascaded Conditional Wasserstein GANs
High-resolution (HR) remote sensing imagery is quite beneficial for subsequent interpretation. Obtaining HR images can be achieved by upgrading the imaging device. Yet, the cost to perform this task is very huge. Thus, it is necessary to obtain HR images from low-resolution (LR) ones. In the literature, the super-resolution image reconstruction methods based on deep learning have unparalleled advantages in comparison to traditional reconstruction methods. This work is inspired by these current mainstream methods and proposes a novel cascaded conditional Wasserstein generative adversarial network (CCWGAN) architecture with the residual dense block to generate high quality remote sensing images. We validate the proposed method on the NWPU VHR-10 dataset. Experimental results show our CCWGAN method has superior performance compared with the state-of-the-art GAN methods.