自适应傅立叶分解方法在心肺音分离中的应用

Z. Wang, J. R. D. Cruz, F. Wan
{"title":"自适应傅立叶分解方法在心肺音分离中的应用","authors":"Z. Wang, J. R. D. Cruz, F. Wan","doi":"10.1109/CIVEMSA.2015.7158631","DOIUrl":null,"url":null,"abstract":"Interference often occurs between the lung sound (LS) and the heart sound (HS). Due to the overlap in their frequency spectrums, it is difficult to separate them. This paper proposes a novel separation method based on the adaptive Fourier decomposition (AFD) to separate the HS and the LS with the minimum energy loss. This AFD-based separation method is validated on the real HS signal from the University of Michigan Heart Sound and Murmur Library as well as the real LS signal from the 3M repository. Simulation results indicate that the proposed method is better than other extraction methods based on the recursive least square (RLS), the standard empirical mode decomposition (EMD) and various extensions of the EMD including the ensemble EMD (EEMD), the multivariate EMD (M-EMD) and the noise assisted M-EMD (NAM-EMD).","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Adaptive Fourier decomposition approach for lung-heart sound separation\",\"authors\":\"Z. Wang, J. R. D. Cruz, F. Wan\",\"doi\":\"10.1109/CIVEMSA.2015.7158631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interference often occurs between the lung sound (LS) and the heart sound (HS). Due to the overlap in their frequency spectrums, it is difficult to separate them. This paper proposes a novel separation method based on the adaptive Fourier decomposition (AFD) to separate the HS and the LS with the minimum energy loss. This AFD-based separation method is validated on the real HS signal from the University of Michigan Heart Sound and Murmur Library as well as the real LS signal from the 3M repository. Simulation results indicate that the proposed method is better than other extraction methods based on the recursive least square (RLS), the standard empirical mode decomposition (EMD) and various extensions of the EMD including the ensemble EMD (EEMD), the multivariate EMD (M-EMD) and the noise assisted M-EMD (NAM-EMD).\",\"PeriodicalId\":348918,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2015.7158631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

肺音(LS)和心音(HS)之间经常发生干扰。由于它们的频谱重叠,很难将它们分离开来。本文提出了一种基于自适应傅立叶分解(AFD)的分离方法,以最小的能量损失分离HS和LS。这种基于afd的分离方法在密歇根大学心音和杂音库的真实HS信号以及3M库的真实LS信号上进行了验证。仿真结果表明,该方法优于基于递归最小二乘(RLS)、标准经验模态分解(EMD)以及EMD的各种扩展,包括集合EMD (EEMD)、多元EMD (M-EMD)和噪声辅助M-EMD (name -EMD)的提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Fourier decomposition approach for lung-heart sound separation
Interference often occurs between the lung sound (LS) and the heart sound (HS). Due to the overlap in their frequency spectrums, it is difficult to separate them. This paper proposes a novel separation method based on the adaptive Fourier decomposition (AFD) to separate the HS and the LS with the minimum energy loss. This AFD-based separation method is validated on the real HS signal from the University of Michigan Heart Sound and Murmur Library as well as the real LS signal from the 3M repository. Simulation results indicate that the proposed method is better than other extraction methods based on the recursive least square (RLS), the standard empirical mode decomposition (EMD) and various extensions of the EMD including the ensemble EMD (EEMD), the multivariate EMD (M-EMD) and the noise assisted M-EMD (NAM-EMD).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信