基于融合注意机制的改进YOLOv5无人机目标检测算法

Yan He, Yanni Zhao, Hongfei Nie
{"title":"基于融合注意机制的改进YOLOv5无人机目标检测算法","authors":"Yan He, Yanni Zhao, Hongfei Nie","doi":"10.1145/3590003.3590074","DOIUrl":null,"url":null,"abstract":"This paper proposes a modified YOLOv5 UAV target detection algorithm for the low detection accuracy caused by the dense target distribution and too small size in the UAV image. Firstly, the coordinate attention mechanism (Coordinate Attention, CA) is introduced in the backbone network CSPDarknet53 to enhance the feature extraction capability of the network; secondly, the multi-size feature pyramid network is designed to introduce a larger resolution feature map for feature fusion and prediction, and to improve the accuracy of small target detection. Experiments on the VisDrone2021 dataset, the results show that the average detection accuracy (Mean Average Precision, mAP) of the improved YOLOv5 algorithm reached 43.0%, 5.8 percentage points higher than the original algorithm, which fully proves the high efficiency of the proposed improved algorithm on the ground target detection of the UAV.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"539 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved YOLOv5 UAV Target Detection Algorithm by Fused Attention Mechanism\",\"authors\":\"Yan He, Yanni Zhao, Hongfei Nie\",\"doi\":\"10.1145/3590003.3590074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a modified YOLOv5 UAV target detection algorithm for the low detection accuracy caused by the dense target distribution and too small size in the UAV image. Firstly, the coordinate attention mechanism (Coordinate Attention, CA) is introduced in the backbone network CSPDarknet53 to enhance the feature extraction capability of the network; secondly, the multi-size feature pyramid network is designed to introduce a larger resolution feature map for feature fusion and prediction, and to improve the accuracy of small target detection. Experiments on the VisDrone2021 dataset, the results show that the average detection accuracy (Mean Average Precision, mAP) of the improved YOLOv5 algorithm reached 43.0%, 5.8 percentage points higher than the original algorithm, which fully proves the high efficiency of the proposed improved algorithm on the ground target detection of the UAV.\",\"PeriodicalId\":340225,\"journal\":{\"name\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"volume\":\"539 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590003.3590074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对无人机图像中目标分布密集、尺寸过小导致检测精度不高的问题,提出了一种改进的YOLOv5无人机目标检测算法。首先,在骨干网络CSPDarknet53中引入坐标注意机制(coordinate attention, CA),增强网络的特征提取能力;其次,设计多尺度特征金字塔网络,引入更大分辨率的特征图进行特征融合和预测,提高小目标检测的精度;在VisDrone2021数据集上的实验结果表明,改进的YOLOv5算法的平均检测精度(Mean average Precision, mAP)达到43.0%,比原算法提高5.8个百分点,充分证明了改进算法在无人机地面目标检测上的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved YOLOv5 UAV Target Detection Algorithm by Fused Attention Mechanism
This paper proposes a modified YOLOv5 UAV target detection algorithm for the low detection accuracy caused by the dense target distribution and too small size in the UAV image. Firstly, the coordinate attention mechanism (Coordinate Attention, CA) is introduced in the backbone network CSPDarknet53 to enhance the feature extraction capability of the network; secondly, the multi-size feature pyramid network is designed to introduce a larger resolution feature map for feature fusion and prediction, and to improve the accuracy of small target detection. Experiments on the VisDrone2021 dataset, the results show that the average detection accuracy (Mean Average Precision, mAP) of the improved YOLOv5 algorithm reached 43.0%, 5.8 percentage points higher than the original algorithm, which fully proves the high efficiency of the proposed improved algorithm on the ground target detection of the UAV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信