时间序列自然归算与分解归算

S. Ribeiro, C. L. D. Castro
{"title":"时间序列自然归算与分解归算","authors":"S. Ribeiro, C. L. D. Castro","doi":"10.1109/LA-CCI48322.2021.9769791","DOIUrl":null,"url":null,"abstract":"Dealing with missing time steps in time series data is a very important step in data analysis. In this paper, two new methods to impute missing time steps are presented and compared to other classical imputation methods, as well as newer, state-of-the-art methods. The first imputation method presented is Imputation by Decomposition. The second imputation method presented is Imputation by Nature. The imputation methods are used to impute a Financial Indexes and instability trackers data set, a COVID-19 data set and a Deng data set and then predictions are made and the results are presented.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Imputation by Nature and by Decomposition\",\"authors\":\"S. Ribeiro, C. L. D. Castro\",\"doi\":\"10.1109/LA-CCI48322.2021.9769791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dealing with missing time steps in time series data is a very important step in data analysis. In this paper, two new methods to impute missing time steps are presented and compared to other classical imputation methods, as well as newer, state-of-the-art methods. The first imputation method presented is Imputation by Decomposition. The second imputation method presented is Imputation by Nature. The imputation methods are used to impute a Financial Indexes and instability trackers data set, a COVID-19 data set and a Deng data set and then predictions are made and the results are presented.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列数据中缺失时间步长的处理是数据分析中非常重要的一步。在本文中,提出了两种新的方法来估算缺失时间步长,并与其他经典的估算方法,以及更新的,最先进的方法进行了比较。第一种方法是分解归算。第二种归算方法是自然归算。采用该方法分别对金融指数和不稳定性跟踪器数据集、COVID-19数据集和Deng数据集进行了估算,并进行了预测并给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Imputation by Nature and by Decomposition
Dealing with missing time steps in time series data is a very important step in data analysis. In this paper, two new methods to impute missing time steps are presented and compared to other classical imputation methods, as well as newer, state-of-the-art methods. The first imputation method presented is Imputation by Decomposition. The second imputation method presented is Imputation by Nature. The imputation methods are used to impute a Financial Indexes and instability trackers data set, a COVID-19 data set and a Deng data set and then predictions are made and the results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信