语音答疑的语言建模方法

Matthias H. Heie, E. Whittaker, Josef R. Novak, S. Furui
{"title":"语音答疑的语言建模方法","authors":"Matthias H. Heie, E. Whittaker, Josef R. Novak, S. Furui","doi":"10.1109/ASRU.2007.4430112","DOIUrl":null,"url":null,"abstract":"This paper presents a language modeling approach to sentence retrieval for Question Answering (QA) that we used in Question Answering on speech transcripts (QAst), a pilot task at the Cross Language Evaluation Forum (CLEF) evaluations 2007. A language model (LM) is generated for each sentence and these models are combined with document LMs to take advantage of contextual information. A query expansion technique using class models is proposed and included in our framework. Finally, our method's impact on exact answer extraction is evaluated. We show that combining sentence LMs with document LMs significantly improves sentence retrieval performance, and that this sentence retrieval approach leads to better answer extraction performance.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A language modeling approach to question answering on speech transcripts\",\"authors\":\"Matthias H. Heie, E. Whittaker, Josef R. Novak, S. Furui\",\"doi\":\"10.1109/ASRU.2007.4430112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a language modeling approach to sentence retrieval for Question Answering (QA) that we used in Question Answering on speech transcripts (QAst), a pilot task at the Cross Language Evaluation Forum (CLEF) evaluations 2007. A language model (LM) is generated for each sentence and these models are combined with document LMs to take advantage of contextual information. A query expansion technique using class models is proposed and included in our framework. Finally, our method's impact on exact answer extraction is evaluated. We show that combining sentence LMs with document LMs significantly improves sentence retrieval performance, and that this sentence retrieval approach leads to better answer extraction performance.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种用于问答(QA)句子检索的语言建模方法,我们将其用于2007年跨语言评估论坛(CLEF)评估的试点任务——语音文本问答(QAst)。为每个句子生成语言模型(LM),并将这些模型与文档LM相结合,以利用上下文信息。提出了一种使用类模型的查询扩展技术,并将其包含在我们的框架中。最后,评估了我们的方法对精确答案提取的影响。我们的研究表明,将句子LMs与文档LMs相结合可以显著提高句子检索性能,并且这种句子检索方法可以获得更好的答案提取性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A language modeling approach to question answering on speech transcripts
This paper presents a language modeling approach to sentence retrieval for Question Answering (QA) that we used in Question Answering on speech transcripts (QAst), a pilot task at the Cross Language Evaluation Forum (CLEF) evaluations 2007. A language model (LM) is generated for each sentence and these models are combined with document LMs to take advantage of contextual information. A query expansion technique using class models is proposed and included in our framework. Finally, our method's impact on exact answer extraction is evaluated. We show that combining sentence LMs with document LMs significantly improves sentence retrieval performance, and that this sentence retrieval approach leads to better answer extraction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信