模块化的类别

Michael Mueger
{"title":"模块化的类别","authors":"Michael Mueger","doi":"10.1093/acprof:oso/9780199646296.003.0006","DOIUrl":null,"url":null,"abstract":"• Modular categories serve as input datum for the Reshetikhin-Turaev construction of topological quantum field theories in 2+1 dimensions and therefore give rise to invariants of smooth 3-manifolds. This goes some way towards making Witten’s interpretation of the Jones polynomial via Chern-Simons QFT rigorous. (But since there still is no complete rigorous non-perturbative construction of the Chern-Simons QFTs by conventional quantum field theory methods, there also is no proof of their equivalence to the RT-TQFTs constructed using the representation theory of quantum groups.)","PeriodicalId":273067,"journal":{"name":"Quantum Physics and Linguistics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Modular Categories\",\"authors\":\"Michael Mueger\",\"doi\":\"10.1093/acprof:oso/9780199646296.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"• Modular categories serve as input datum for the Reshetikhin-Turaev construction of topological quantum field theories in 2+1 dimensions and therefore give rise to invariants of smooth 3-manifolds. This goes some way towards making Witten’s interpretation of the Jones polynomial via Chern-Simons QFT rigorous. (But since there still is no complete rigorous non-perturbative construction of the Chern-Simons QFTs by conventional quantum field theory methods, there also is no proof of their equivalence to the RT-TQFTs constructed using the representation theory of quantum groups.)\",\"PeriodicalId\":273067,\"journal\":{\"name\":\"Quantum Physics and Linguistics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Physics and Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/acprof:oso/9780199646296.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Physics and Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780199646296.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

•模范畴作为2+1维拓扑量子场论的Reshetikhin-Turaev构造的输入基准,因此产生光滑3流形的不变量。这在某种程度上使Witten通过chen - simons QFT对Jones多项式的解释更加严谨。(但是,由于传统量子场论方法仍然没有完全严格的chen - simons qft的非微扰构造,因此也没有证明它们与使用量子群表示理论构造的rt - tqft等效。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Categories
• Modular categories serve as input datum for the Reshetikhin-Turaev construction of topological quantum field theories in 2+1 dimensions and therefore give rise to invariants of smooth 3-manifolds. This goes some way towards making Witten’s interpretation of the Jones polynomial via Chern-Simons QFT rigorous. (But since there still is no complete rigorous non-perturbative construction of the Chern-Simons QFTs by conventional quantum field theory methods, there also is no proof of their equivalence to the RT-TQFTs constructed using the representation theory of quantum groups.)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信