使用支持向量机的pH值多标签分类

Raphael Benedict G. Luta, R. Baldovino, N. Bugtai
{"title":"使用支持向量机的pH值多标签分类","authors":"Raphael Benedict G. Luta, R. Baldovino, N. Bugtai","doi":"10.1109/HNICEM.2018.8666299","DOIUrl":null,"url":null,"abstract":"This paper developed an intelligent system application for the multi-label classification of pH levels. The pH is a measure of how acidic or how basic a substance is. The use of supervised learning methods may serve as a cheaper and more reliable alternative for pH level measurement. In this study, hue-saturation-value (HSV) color data were used for the training and testing the developed model. The obtained dataset has four field attributes including the output. Support vector machine (SVM) classification was the supervised learning tool used to model the classification system. 1410 samples from the dataset were used for the training (987 samples) and the testing (423 samples). Moreover, several kernel functions such as polynomial and radial basis function (RBF) kernel were examined when designing the classification system. Model evaluation through metric functions show that the trained SVM with a polynomial kernel has a 99.41% accuracy. As a result, the developed model was able to produce multiple decision hyperplanes for the multi-label classification task.","PeriodicalId":426103,"journal":{"name":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-label Classification of pH Levels using Support Vector Machines\",\"authors\":\"Raphael Benedict G. Luta, R. Baldovino, N. Bugtai\",\"doi\":\"10.1109/HNICEM.2018.8666299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper developed an intelligent system application for the multi-label classification of pH levels. The pH is a measure of how acidic or how basic a substance is. The use of supervised learning methods may serve as a cheaper and more reliable alternative for pH level measurement. In this study, hue-saturation-value (HSV) color data were used for the training and testing the developed model. The obtained dataset has four field attributes including the output. Support vector machine (SVM) classification was the supervised learning tool used to model the classification system. 1410 samples from the dataset were used for the training (987 samples) and the testing (423 samples). Moreover, several kernel functions such as polynomial and radial basis function (RBF) kernel were examined when designing the classification system. Model evaluation through metric functions show that the trained SVM with a polynomial kernel has a 99.41% accuracy. As a result, the developed model was able to produce multiple decision hyperplanes for the multi-label classification task.\",\"PeriodicalId\":426103,\"journal\":{\"name\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM.2018.8666299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2018.8666299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文开发了一种用于pH值多标签分类的智能系统。pH值是衡量一种物质的酸性或碱性的指标。使用监督学习方法可以作为pH值测量的更便宜和更可靠的替代方法。在本研究中,使用色调-饱和值(HSV)颜色数据对所建立的模型进行训练和测试。得到的数据集有四个字段属性,包括输出。支持向量机(SVM)分类是用于对分类系统建模的监督学习工具。使用数据集中的1410个样本进行训练(987个样本)和测试(423个样本)。此外,在设计分类系统时,还对多项式核函数和径向基核函数等核函数进行了检验。通过度量函数对模型进行评价,结果表明,使用多项式核训练的支持向量机准确率达到99.41%。结果表明,该模型能够为多标签分类任务生成多个决策超平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-label Classification of pH Levels using Support Vector Machines
This paper developed an intelligent system application for the multi-label classification of pH levels. The pH is a measure of how acidic or how basic a substance is. The use of supervised learning methods may serve as a cheaper and more reliable alternative for pH level measurement. In this study, hue-saturation-value (HSV) color data were used for the training and testing the developed model. The obtained dataset has four field attributes including the output. Support vector machine (SVM) classification was the supervised learning tool used to model the classification system. 1410 samples from the dataset were used for the training (987 samples) and the testing (423 samples). Moreover, several kernel functions such as polynomial and radial basis function (RBF) kernel were examined when designing the classification system. Model evaluation through metric functions show that the trained SVM with a polynomial kernel has a 99.41% accuracy. As a result, the developed model was able to produce multiple decision hyperplanes for the multi-label classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信