Sergio Davies, Alexander D. Rast, F. Galluppi, S. Furber
{"title":"维护SpiNNaker的实时同步","authors":"Sergio Davies, Alexander D. Rast, F. Galluppi, S. Furber","doi":"10.1145/2016604.2016622","DOIUrl":null,"url":null,"abstract":"As an asynchronous universal multiprocessor for real-time neural simulation, SpiNNaker presents timing concerns not present in synchronous systems. In this paper we present a series of tools that solve the problem of synchronising a multichip distributed simulation containing multiple independent time domains. These tools hint at an important neural modelling capability of the SpiNNaker system: the ability to decouple the system time from the model time, leading to an abstract-time neural modelling platform.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maintaining real-time synchrony on SpiNNaker\",\"authors\":\"Sergio Davies, Alexander D. Rast, F. Galluppi, S. Furber\",\"doi\":\"10.1145/2016604.2016622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an asynchronous universal multiprocessor for real-time neural simulation, SpiNNaker presents timing concerns not present in synchronous systems. In this paper we present a series of tools that solve the problem of synchronising a multichip distributed simulation containing multiple independent time domains. These tools hint at an important neural modelling capability of the SpiNNaker system: the ability to decouple the system time from the model time, leading to an abstract-time neural modelling platform.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2016604.2016622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2016604.2016622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As an asynchronous universal multiprocessor for real-time neural simulation, SpiNNaker presents timing concerns not present in synchronous systems. In this paper we present a series of tools that solve the problem of synchronising a multichip distributed simulation containing multiple independent time domains. These tools hint at an important neural modelling capability of the SpiNNaker system: the ability to decouple the system time from the model time, leading to an abstract-time neural modelling platform.