基于决策树的区域分类

J. V. Prehn, E. Smirnov
{"title":"基于决策树的区域分类","authors":"J. V. Prehn, E. Smirnov","doi":"10.1109/ICDMW.2008.19","DOIUrl":null,"url":null,"abstract":"The region-classification task is to construct class regions containing the correct classes of the objects being classified with a given probability. To turn a point classifier into a region classifier, the conformal framework is used . However, applying the framework requires a non-conformity function. This function estimates the instances' non-conformity for the point classifier used. This paper studies how to turn decision trees into region classifiers. It considers two non-conformity functions. The first one is a general non-conformity function applicable to any point classifier . The second function is a specific non-conformity function for decision trees . Our main contribution is twofold. First we show, contrary to , that the general function outperforms the specific one for decision-tree region classifiers in terms of validity and efficiency of the class regions. Second, we show how the decision-tree complexity influences the quality of the class regions based on these two functions.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Region Classification with Decision Trees\",\"authors\":\"J. V. Prehn, E. Smirnov\",\"doi\":\"10.1109/ICDMW.2008.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The region-classification task is to construct class regions containing the correct classes of the objects being classified with a given probability. To turn a point classifier into a region classifier, the conformal framework is used . However, applying the framework requires a non-conformity function. This function estimates the instances' non-conformity for the point classifier used. This paper studies how to turn decision trees into region classifiers. It considers two non-conformity functions. The first one is a general non-conformity function applicable to any point classifier . The second function is a specific non-conformity function for decision trees . Our main contribution is twofold. First we show, contrary to , that the general function outperforms the specific one for decision-tree region classifiers in terms of validity and efficiency of the class regions. Second, we show how the decision-tree complexity influences the quality of the class regions based on these two functions.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

区域分类任务是根据给定的概率构造包含被分类对象的正确类别的类区域。为了将点分类器转化为区域分类器,使用了保角框架。然而,应用框架需要一个非一致性函数。该函数估计所使用的点分类器实例的不一致性。本文研究了如何将决策树转化为区域分类器。它考虑了两个不符合函数。第一个是适用于任何点分类器的一般不符合函数。第二个函数是决策树的特定不合格函数。我们的主要贡献是双重的。首先,我们表明,相反,在类区域的有效性和效率方面,一般函数优于决策树区域分类器的特定函数。其次,基于这两个函数,我们展示了决策树复杂性如何影响类区域的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region Classification with Decision Trees
The region-classification task is to construct class regions containing the correct classes of the objects being classified with a given probability. To turn a point classifier into a region classifier, the conformal framework is used . However, applying the framework requires a non-conformity function. This function estimates the instances' non-conformity for the point classifier used. This paper studies how to turn decision trees into region classifiers. It considers two non-conformity functions. The first one is a general non-conformity function applicable to any point classifier . The second function is a specific non-conformity function for decision trees . Our main contribution is twofold. First we show, contrary to , that the general function outperforms the specific one for decision-tree region classifiers in terms of validity and efficiency of the class regions. Second, we show how the decision-tree complexity influences the quality of the class regions based on these two functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信