{"title":"基于决策树的区域分类","authors":"J. V. Prehn, E. Smirnov","doi":"10.1109/ICDMW.2008.19","DOIUrl":null,"url":null,"abstract":"The region-classification task is to construct class regions containing the correct classes of the objects being classified with a given probability. To turn a point classifier into a region classifier, the conformal framework is used . However, applying the framework requires a non-conformity function. This function estimates the instances' non-conformity for the point classifier used. This paper studies how to turn decision trees into region classifiers. It considers two non-conformity functions. The first one is a general non-conformity function applicable to any point classifier . The second function is a specific non-conformity function for decision trees . Our main contribution is twofold. First we show, contrary to , that the general function outperforms the specific one for decision-tree region classifiers in terms of validity and efficiency of the class regions. Second, we show how the decision-tree complexity influences the quality of the class regions based on these two functions.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Region Classification with Decision Trees\",\"authors\":\"J. V. Prehn, E. Smirnov\",\"doi\":\"10.1109/ICDMW.2008.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The region-classification task is to construct class regions containing the correct classes of the objects being classified with a given probability. To turn a point classifier into a region classifier, the conformal framework is used . However, applying the framework requires a non-conformity function. This function estimates the instances' non-conformity for the point classifier used. This paper studies how to turn decision trees into region classifiers. It considers two non-conformity functions. The first one is a general non-conformity function applicable to any point classifier . The second function is a specific non-conformity function for decision trees . Our main contribution is twofold. First we show, contrary to , that the general function outperforms the specific one for decision-tree region classifiers in terms of validity and efficiency of the class regions. Second, we show how the decision-tree complexity influences the quality of the class regions based on these two functions.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The region-classification task is to construct class regions containing the correct classes of the objects being classified with a given probability. To turn a point classifier into a region classifier, the conformal framework is used . However, applying the framework requires a non-conformity function. This function estimates the instances' non-conformity for the point classifier used. This paper studies how to turn decision trees into region classifiers. It considers two non-conformity functions. The first one is a general non-conformity function applicable to any point classifier . The second function is a specific non-conformity function for decision trees . Our main contribution is twofold. First we show, contrary to , that the general function outperforms the specific one for decision-tree region classifiers in terms of validity and efficiency of the class regions. Second, we show how the decision-tree complexity influences the quality of the class regions based on these two functions.