基于叠加的图解推理演算

R. Echahed, M. Echenim, M. Mhalla, N. Peltier
{"title":"基于叠加的图解推理演算","authors":"R. Echahed, M. Echenim, M. Mhalla, N. Peltier","doi":"10.1145/3479394.3479405","DOIUrl":null,"url":null,"abstract":"We introduce a class of rooted graphs which are expressive enough to encode various kinds of classical or quantum circuits. We then follow a set-theoretic approach to define rewrite systems over the considered graphs. Afterwards, we tackle the problem of equational reasoning with the graphs under study and we propose a new Superposition calculus to check the unsatisfiability of formulas consisting of equations or disequations over these graphs. We establish the soundness and refutational completeness of the calculus.","PeriodicalId":242361,"journal":{"name":"23rd International Symposium on Principles and Practice of Declarative Programming","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Superposition-Based Calculus for Diagrammatic Reasoning\",\"authors\":\"R. Echahed, M. Echenim, M. Mhalla, N. Peltier\",\"doi\":\"10.1145/3479394.3479405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of rooted graphs which are expressive enough to encode various kinds of classical or quantum circuits. We then follow a set-theoretic approach to define rewrite systems over the considered graphs. Afterwards, we tackle the problem of equational reasoning with the graphs under study and we propose a new Superposition calculus to check the unsatisfiability of formulas consisting of equations or disequations over these graphs. We establish the soundness and refutational completeness of the calculus.\",\"PeriodicalId\":242361,\"journal\":{\"name\":\"23rd International Symposium on Principles and Practice of Declarative Programming\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd International Symposium on Principles and Practice of Declarative Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3479394.3479405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd International Symposium on Principles and Practice of Declarative Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3479394.3479405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一类有根图,它们具有足够的表达能力来编码各种经典电路或量子电路。然后,我们遵循集合论的方法来定义所考虑图上的重写系统。然后,我们用所研究的图解决了等式推理问题,并提出了一种新的叠加演算来检验这些图上由方程或不等式组成的公式的不满足性。我们建立了微积分的完备性和反驳完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Superposition-Based Calculus for Diagrammatic Reasoning
We introduce a class of rooted graphs which are expressive enough to encode various kinds of classical or quantum circuits. We then follow a set-theoretic approach to define rewrite systems over the considered graphs. Afterwards, we tackle the problem of equational reasoning with the graphs under study and we propose a new Superposition calculus to check the unsatisfiability of formulas consisting of equations or disequations over these graphs. We establish the soundness and refutational completeness of the calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信