周期数据流量建模与基于预测的带宽分配

Zikuan Liu, J. Almhana, V. Choulakian, R. McGorman
{"title":"周期数据流量建模与基于预测的带宽分配","authors":"Zikuan Liu, J. Almhana, V. Choulakian, R. McGorman","doi":"10.1109/CNSR.2006.41","DOIUrl":null,"url":null,"abstract":"For the purpose of provisioning bandwidth for Internet access, we need to model the traffic at large time scales, over which the traffic shows evident periodicity, long correlation and a non-Gaussian marginal distribution. To capture these characteristics simultaneously, in this paper we use a periodicity transform-to identify the most significant periods of the traffic and use an autoregressive time series to capture the autocorrelation and apply the G-and-H distribution to model the marginal distribution. A prediction-based bandwidth provisioning scheme is proposed and many experimental results on real Internet traces are also provided","PeriodicalId":425107,"journal":{"name":"4th Annual Communication Networks and Services Research Conference (CNSR'06)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Periodic Data Traffic Modeling and Predicition-Based Bandwith Allocation\",\"authors\":\"Zikuan Liu, J. Almhana, V. Choulakian, R. McGorman\",\"doi\":\"10.1109/CNSR.2006.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the purpose of provisioning bandwidth for Internet access, we need to model the traffic at large time scales, over which the traffic shows evident periodicity, long correlation and a non-Gaussian marginal distribution. To capture these characteristics simultaneously, in this paper we use a periodicity transform-to identify the most significant periods of the traffic and use an autoregressive time series to capture the autocorrelation and apply the G-and-H distribution to model the marginal distribution. A prediction-based bandwidth provisioning scheme is proposed and many experimental results on real Internet traces are also provided\",\"PeriodicalId\":425107,\"journal\":{\"name\":\"4th Annual Communication Networks and Services Research Conference (CNSR'06)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th Annual Communication Networks and Services Research Conference (CNSR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNSR.2006.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th Annual Communication Networks and Services Research Conference (CNSR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSR.2006.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了为互联网接入提供带宽,我们需要在大时间尺度上对流量进行建模,在大时间尺度上,流量表现出明显的周期性、长相关性和非高斯边际分布。为了同时捕捉这些特征,在本文中,我们使用周期性变换来识别交通的最重要时期,并使用自回归时间序列来捕捉自相关,并应用g和h分布来模拟边缘分布。提出了一种基于预测的带宽分配方案,并给出了在真实网络上的实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Data Traffic Modeling and Predicition-Based Bandwith Allocation
For the purpose of provisioning bandwidth for Internet access, we need to model the traffic at large time scales, over which the traffic shows evident periodicity, long correlation and a non-Gaussian marginal distribution. To capture these characteristics simultaneously, in this paper we use a periodicity transform-to identify the most significant periods of the traffic and use an autoregressive time series to capture the autocorrelation and apply the G-and-H distribution to model the marginal distribution. A prediction-based bandwidth provisioning scheme is proposed and many experimental results on real Internet traces are also provided
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信