一个更普遍的证明理论

Q1 Mathematics
Heinrich Wansing
{"title":"一个更普遍的证明理论","authors":"Heinrich Wansing","doi":"10.1016/j.jal.2017.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper it is suggested to generalize our understanding of general (structural) proof theory and to consider it as a general theory of two kinds of derivations, namely proofs and dual proofs. The proposal is substantiated by (i) considerations on assertion, denial, and bi-lateralism, (ii) remarks on compositionality in proof-theoretic semantics, and (iii) comments on falsification and co-implication. The main formal result of the paper is a normal form theorem for the natural deduction proof system N2Int of the bi-intuitionistic logic 2Int. The proof makes use of the faithful embedding of 2Int into intuitionistic logic with respect to validity and shows that conversions of dual proofs can be sidestepped.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"25 ","pages":"Pages 23-46"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2017.01.002","citationCount":"26","resultStr":"{\"title\":\"A more general general proof theory\",\"authors\":\"Heinrich Wansing\",\"doi\":\"10.1016/j.jal.2017.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper it is suggested to generalize our understanding of general (structural) proof theory and to consider it as a general theory of two kinds of derivations, namely proofs and dual proofs. The proposal is substantiated by (i) considerations on assertion, denial, and bi-lateralism, (ii) remarks on compositionality in proof-theoretic semantics, and (iii) comments on falsification and co-implication. The main formal result of the paper is a normal form theorem for the natural deduction proof system N2Int of the bi-intuitionistic logic 2Int. The proof makes use of the faithful embedding of 2Int into intuitionistic logic with respect to validity and shows that conversions of dual proofs can be sidestepped.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"25 \",\"pages\":\"Pages 23-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2017.01.002\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868317300022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868317300022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 26

摘要

本文建议推广我们对一般(结构)证明理论的认识,把它看作是两类推导的一般理论,即证明和对偶证明。该建议由以下方面证实:(i)对断言、否认和双边主义的考虑,(ii)对证明论语义中的组合性的评论,以及(iii)对证伪和共同暗示的评论。本文的主要形式化结果是双直觉逻辑2Int的自然演绎证明系统N2Int的一个范式定理。该证明利用了2Int在有效性方面忠实嵌入直觉逻辑,并表明对偶证明的转换是可以回避的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A more general general proof theory

In this paper it is suggested to generalize our understanding of general (structural) proof theory and to consider it as a general theory of two kinds of derivations, namely proofs and dual proofs. The proposal is substantiated by (i) considerations on assertion, denial, and bi-lateralism, (ii) remarks on compositionality in proof-theoretic semantics, and (iii) comments on falsification and co-implication. The main formal result of the paper is a normal form theorem for the natural deduction proof system N2Int of the bi-intuitionistic logic 2Int. The proof makes use of the faithful embedding of 2Int into intuitionistic logic with respect to validity and shows that conversions of dual proofs can be sidestepped.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信