面向服务的网格计算在复杂环境建模中的大规模参数估计

Kejing He, Shoubin Dong, Li-Ping Zheng
{"title":"面向服务的网格计算在复杂环境建模中的大规模参数估计","authors":"Kejing He, Shoubin Dong, Li-Ping Zheng","doi":"10.1145/1141277.1141449","DOIUrl":null,"url":null,"abstract":"Complex environmental modeling often involves a large number of unknown physical and ecological parameters. Parameter estimation is one of the most difficult steps in many modeling activities. In this paper we present a service-oriented framework, named GGPE-G (Grid-enabled Global optimization for General Parameter Estimation), for efficient parameter estimation in heterogeneous, distributed systems. Being presented as services, the optimization algorithms, the physical and ecological process models and clients can interact with each other by XML message interactions. The proposed approach supports a generic parameter estimation procedure and can be easily applied to different modeling environment. In this paper, we explain the design, architecture, and implementation of GGPE-G in details. We also apply GGPE-G to a complex soil-water-atmosphere-plant modeling system to demonstrate its utility and efficiency.","PeriodicalId":269830,"journal":{"name":"Proceedings of the 2006 ACM symposium on Applied computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Service-oriented grid computation for large-scale parameter estimation in complex environmental modeling\",\"authors\":\"Kejing He, Shoubin Dong, Li-Ping Zheng\",\"doi\":\"10.1145/1141277.1141449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex environmental modeling often involves a large number of unknown physical and ecological parameters. Parameter estimation is one of the most difficult steps in many modeling activities. In this paper we present a service-oriented framework, named GGPE-G (Grid-enabled Global optimization for General Parameter Estimation), for efficient parameter estimation in heterogeneous, distributed systems. Being presented as services, the optimization algorithms, the physical and ecological process models and clients can interact with each other by XML message interactions. The proposed approach supports a generic parameter estimation procedure and can be easily applied to different modeling environment. In this paper, we explain the design, architecture, and implementation of GGPE-G in details. We also apply GGPE-G to a complex soil-water-atmosphere-plant modeling system to demonstrate its utility and efficiency.\",\"PeriodicalId\":269830,\"journal\":{\"name\":\"Proceedings of the 2006 ACM symposium on Applied computing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM symposium on Applied computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1141277.1141449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM symposium on Applied computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1141277.1141449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

复杂的环境建模往往涉及大量未知的物理和生态参数。参数估计是许多建模活动中最困难的步骤之一。在本文中,我们提出了一个面向服务的框架,名为GGPE-G(支持网格的通用参数估计全局优化),用于在异构分布式系统中进行有效的参数估计。优化算法、物理和生态过程模型以及客户端以服务的形式呈现,可以通过XML消息交互进行交互。该方法支持通用的参数估计过程,可方便地应用于不同的建模环境。在本文中,我们详细解释了GGPE-G的设计、架构和实现。我们还将GGPE-G应用于一个复杂的土壤-水-大气-植物模型系统,以证明其实用性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Service-oriented grid computation for large-scale parameter estimation in complex environmental modeling
Complex environmental modeling often involves a large number of unknown physical and ecological parameters. Parameter estimation is one of the most difficult steps in many modeling activities. In this paper we present a service-oriented framework, named GGPE-G (Grid-enabled Global optimization for General Parameter Estimation), for efficient parameter estimation in heterogeneous, distributed systems. Being presented as services, the optimization algorithms, the physical and ecological process models and clients can interact with each other by XML message interactions. The proposed approach supports a generic parameter estimation procedure and can be easily applied to different modeling environment. In this paper, we explain the design, architecture, and implementation of GGPE-G in details. We also apply GGPE-G to a complex soil-water-atmosphere-plant modeling system to demonstrate its utility and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信