Gerardo González-Cerdas, Yanis Taege, Felix Jund, Dragana Sandic, C. Bauer, Ç. Ataman
{"title":"用于膀胱内光学相干断层扫描和血管造影的临床前级显微内窥镜","authors":"Gerardo González-Cerdas, Yanis Taege, Felix Jund, Dragana Sandic, C. Bauer, Ç. Ataman","doi":"10.1117/1.JOM.3.1.011006","DOIUrl":null,"url":null,"abstract":"Abstract. We present a preclinical-grade, forward-viewing endomicroscope for in-contact optical coherence tomography (OCT) and optical coherence angiography (OCA) imaging through the working channel of a conventional cystoscope. Beam scanning is achieved with a fiber scanner driven by a tubular piezoelectric actuator. A focusing lens at the fiber tip helps engineering of the operation frequency within a compact probe length to avoid lateral undersampling. Microstructuring of fused silica through selective laser-induced etching was used for manufacturing a self-aligning housing for the probe head. The entire micro-optical system is assembled and encapsulated within a custom-developed sterilizable packaging with 4.5 mm outer diameter. The presented design and fabrication strategy can be used for any forward-viewing probe, independent of its imaging modalities. We demonstrate OCT imaging within a 2.1-mm diameter field of view at a transverse resolution of 19 μm and microvasculature visualization through OCA. The presented probe’s mechanical characteristics and optical performance make it particularly attractive for outpatient care use in the detection of tissue pathology inside the bladder. The presented fabrication methodology provides a reliable strategy for enabling preclinical trials with endoscopic imaging probes.","PeriodicalId":127363,"journal":{"name":"Journal of Optical Microsystems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preclinical-grade microendoscope for optical coherence tomography and angiography inside the bladder\",\"authors\":\"Gerardo González-Cerdas, Yanis Taege, Felix Jund, Dragana Sandic, C. Bauer, Ç. Ataman\",\"doi\":\"10.1117/1.JOM.3.1.011006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We present a preclinical-grade, forward-viewing endomicroscope for in-contact optical coherence tomography (OCT) and optical coherence angiography (OCA) imaging through the working channel of a conventional cystoscope. Beam scanning is achieved with a fiber scanner driven by a tubular piezoelectric actuator. A focusing lens at the fiber tip helps engineering of the operation frequency within a compact probe length to avoid lateral undersampling. Microstructuring of fused silica through selective laser-induced etching was used for manufacturing a self-aligning housing for the probe head. The entire micro-optical system is assembled and encapsulated within a custom-developed sterilizable packaging with 4.5 mm outer diameter. The presented design and fabrication strategy can be used for any forward-viewing probe, independent of its imaging modalities. We demonstrate OCT imaging within a 2.1-mm diameter field of view at a transverse resolution of 19 μm and microvasculature visualization through OCA. The presented probe’s mechanical characteristics and optical performance make it particularly attractive for outpatient care use in the detection of tissue pathology inside the bladder. The presented fabrication methodology provides a reliable strategy for enabling preclinical trials with endoscopic imaging probes.\",\"PeriodicalId\":127363,\"journal\":{\"name\":\"Journal of Optical Microsystems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JOM.3.1.011006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JOM.3.1.011006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preclinical-grade microendoscope for optical coherence tomography and angiography inside the bladder
Abstract. We present a preclinical-grade, forward-viewing endomicroscope for in-contact optical coherence tomography (OCT) and optical coherence angiography (OCA) imaging through the working channel of a conventional cystoscope. Beam scanning is achieved with a fiber scanner driven by a tubular piezoelectric actuator. A focusing lens at the fiber tip helps engineering of the operation frequency within a compact probe length to avoid lateral undersampling. Microstructuring of fused silica through selective laser-induced etching was used for manufacturing a self-aligning housing for the probe head. The entire micro-optical system is assembled and encapsulated within a custom-developed sterilizable packaging with 4.5 mm outer diameter. The presented design and fabrication strategy can be used for any forward-viewing probe, independent of its imaging modalities. We demonstrate OCT imaging within a 2.1-mm diameter field of view at a transverse resolution of 19 μm and microvasculature visualization through OCA. The presented probe’s mechanical characteristics and optical performance make it particularly attractive for outpatient care use in the detection of tissue pathology inside the bladder. The presented fabrication methodology provides a reliable strategy for enabling preclinical trials with endoscopic imaging probes.