城市规模物联网网状网络DoS攻击的点对点检测

Michael J. Rausch, V. Krishna, Peng Gu, Rupak Chandra, B. Feddersen, Ahmed M. Fawaz, W. Sanders
{"title":"城市规模物联网网状网络DoS攻击的点对点检测","authors":"Michael J. Rausch, V. Krishna, Peng Gu, Rupak Chandra, B. Feddersen, Ahmed M. Fawaz, W. Sanders","doi":"10.1109/SmartGridComm.2018.8587518","DOIUrl":null,"url":null,"abstract":"Wireless IoT mesh networks are being widely deployed for use in applications such as operational technology networks in power grids, city-scale surveillance, and monitoring. The benefits of such networks, which may include mission critical communications, can be undermined by an adversary who launches denial-of-service (DoS) attacks on them. In this paper, we present a peer-to-peer approach to detecting and localizing such adversaries by leveraging the topology of the mesh network. In doing so, we make three main contributions. First, we present insights from a preliminary implementation on a standards-based IoT platform used in real smart meter deployments. Second, we propose an optimal choice of peers that can help detect a jammed node, while minimizing the risk that the peers themselves are jammed. Finally, we present a tool to help generate datasets of city-scale IoT mesh topologies for simulation studies.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Peer-to-peer Detection of DoS Attacks on City-Scale IoT Mesh Networks\",\"authors\":\"Michael J. Rausch, V. Krishna, Peng Gu, Rupak Chandra, B. Feddersen, Ahmed M. Fawaz, W. Sanders\",\"doi\":\"10.1109/SmartGridComm.2018.8587518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless IoT mesh networks are being widely deployed for use in applications such as operational technology networks in power grids, city-scale surveillance, and monitoring. The benefits of such networks, which may include mission critical communications, can be undermined by an adversary who launches denial-of-service (DoS) attacks on them. In this paper, we present a peer-to-peer approach to detecting and localizing such adversaries by leveraging the topology of the mesh network. In doing so, we make three main contributions. First, we present insights from a preliminary implementation on a standards-based IoT platform used in real smart meter deployments. Second, we propose an optimal choice of peers that can help detect a jammed node, while minimizing the risk that the peers themselves are jammed. Finally, we present a tool to help generate datasets of city-scale IoT mesh topologies for simulation studies.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线物联网网状网络正在广泛部署,用于电网运营技术网络、城市规模的监控和监控等应用。这种网络的好处,可能包括关键任务通信,可能会被对手发起拒绝服务(DoS)攻击所破坏。在本文中,我们提出了一种点对点方法,通过利用网状网络的拓扑结构来检测和定位这些对手。在这样做的过程中,我们作出了三个主要贡献。首先,我们介绍了在实际智能电表部署中使用的基于标准的物联网平台的初步实施的见解。其次,我们提出了一个最优的对等点选择,可以帮助检测阻塞节点,同时最小化对等点本身被阻塞的风险。最后,我们提出了一个工具来帮助生成城市规模的物联网网格拓扑数据集进行仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peer-to-peer Detection of DoS Attacks on City-Scale IoT Mesh Networks
Wireless IoT mesh networks are being widely deployed for use in applications such as operational technology networks in power grids, city-scale surveillance, and monitoring. The benefits of such networks, which may include mission critical communications, can be undermined by an adversary who launches denial-of-service (DoS) attacks on them. In this paper, we present a peer-to-peer approach to detecting and localizing such adversaries by leveraging the topology of the mesh network. In doing so, we make three main contributions. First, we present insights from a preliminary implementation on a standards-based IoT platform used in real smart meter deployments. Second, we propose an optimal choice of peers that can help detect a jammed node, while minimizing the risk that the peers themselves are jammed. Finally, we present a tool to help generate datasets of city-scale IoT mesh topologies for simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信