基于生物视觉的红外与可见光图像融合

Qianqian Han, Runping Xi, Qian Chen
{"title":"基于生物视觉的红外与可见光图像融合","authors":"Qianqian Han, Runping Xi, Qian Chen","doi":"10.1109/ICIVC55077.2022.9887132","DOIUrl":null,"url":null,"abstract":"Infrared images can acquire salient targets, while visible images contain richer details. It is vital to fuse these two types of images. Benefiting from the existence of the dual-mode cellular mechanism, the rattlesnake is able to process and fusion infrared and visible signals, improving the predatory ability. In this paper, we design an auto-encoder fusion network based on the visual adversarial receptor domain. In this network, we build a feature-level fusion strategy based on the dual-modal cell mechanism which is simulated by the human visual cell’s center-antagonistic receptor domain. Meanwhile, we optimize the feature extraction and feature reconstruction modules in fusion network. By realized the combined research of biological vision and computer vision, our network delivers a better performance than the state-of-the-art methods in both subjective and objective evaluation.","PeriodicalId":227073,"journal":{"name":"2022 7th International Conference on Image, Vision and Computing (ICIVC)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared and Visible Image Fusion Based on Biological Vision\",\"authors\":\"Qianqian Han, Runping Xi, Qian Chen\",\"doi\":\"10.1109/ICIVC55077.2022.9887132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared images can acquire salient targets, while visible images contain richer details. It is vital to fuse these two types of images. Benefiting from the existence of the dual-mode cellular mechanism, the rattlesnake is able to process and fusion infrared and visible signals, improving the predatory ability. In this paper, we design an auto-encoder fusion network based on the visual adversarial receptor domain. In this network, we build a feature-level fusion strategy based on the dual-modal cell mechanism which is simulated by the human visual cell’s center-antagonistic receptor domain. Meanwhile, we optimize the feature extraction and feature reconstruction modules in fusion network. By realized the combined research of biological vision and computer vision, our network delivers a better performance than the state-of-the-art methods in both subjective and objective evaluation.\",\"PeriodicalId\":227073,\"journal\":{\"name\":\"2022 7th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC55077.2022.9887132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC55077.2022.9887132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

红外图像可以获取显著目标,而可见光图像包含更丰富的细节。融合这两种类型的图像是至关重要的。得益于双模细胞机制的存在,响尾蛇能够对红外和可见光信号进行处理和融合,提高了捕食能力。本文设计了一种基于视觉对抗受体域的自编码器融合网络。在这个网络中,我们建立了一个基于双峰细胞机制的特征级融合策略,该机制模拟了人类视觉细胞的中心拮抗受体区域。同时,对融合网络中的特征提取和特征重构模块进行了优化。通过实现生物视觉和计算机视觉的结合研究,我们的网络在主观和客观评价方面都比目前最先进的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared and Visible Image Fusion Based on Biological Vision
Infrared images can acquire salient targets, while visible images contain richer details. It is vital to fuse these two types of images. Benefiting from the existence of the dual-mode cellular mechanism, the rattlesnake is able to process and fusion infrared and visible signals, improving the predatory ability. In this paper, we design an auto-encoder fusion network based on the visual adversarial receptor domain. In this network, we build a feature-level fusion strategy based on the dual-modal cell mechanism which is simulated by the human visual cell’s center-antagonistic receptor domain. Meanwhile, we optimize the feature extraction and feature reconstruction modules in fusion network. By realized the combined research of biological vision and computer vision, our network delivers a better performance than the state-of-the-art methods in both subjective and objective evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信