EDAMS:一种多抓取软测量目标识别的编码器-解码器结构

Oliver Shorthose, A. Albini, Luca Scimeca, Liang He, P. Maiolino
{"title":"EDAMS:一种多抓取软测量目标识别的编码器-解码器结构","authors":"Oliver Shorthose, A. Albini, Luca Scimeca, Liang He, P. Maiolino","doi":"10.1109/RoboSoft55895.2023.10121962","DOIUrl":null,"url":null,"abstract":"The use of tactile sensing exhibits benefits over visual detection as it can be deployed in occluded environments and can provide deeper information about an object's material properties. Soft hands have increasingly been used for tactile object identification, providing a high degree of adaptability without requiring complex control schemes. In this work, we propose a framework for identifying a range of objects in any pose by exploiting the compliance of a soft hand equipped with distributed tactile sensing. We propose EDAMS, an Encoder-Decoder Architecture for Multi-grasp Soft sensing and an ad-hoc data structure capable of encoding information on multiple grasps, while decoupling the dependency on the pose order. We train the model to map the high-dimensional multi-grasp tactile sensor data into a lower-dimensional latent space capable of achieving the geometrical separation of each object class, and enabling accurate object classification. We provide an empirical analysis of the benefit of multi-grasp perception for object identification, and show its impact on the separation of the objects in sensor space. Notably, we find the classification accuracy to change widely across the number of grasps, ranging from 47.0% for a single grasp, to 99.9% for 10 grasps.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EDAMS: An Encoder-Decoder Architecture for Multi-grasp Soft Sensing Object Recognition\",\"authors\":\"Oliver Shorthose, A. Albini, Luca Scimeca, Liang He, P. Maiolino\",\"doi\":\"10.1109/RoboSoft55895.2023.10121962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of tactile sensing exhibits benefits over visual detection as it can be deployed in occluded environments and can provide deeper information about an object's material properties. Soft hands have increasingly been used for tactile object identification, providing a high degree of adaptability without requiring complex control schemes. In this work, we propose a framework for identifying a range of objects in any pose by exploiting the compliance of a soft hand equipped with distributed tactile sensing. We propose EDAMS, an Encoder-Decoder Architecture for Multi-grasp Soft sensing and an ad-hoc data structure capable of encoding information on multiple grasps, while decoupling the dependency on the pose order. We train the model to map the high-dimensional multi-grasp tactile sensor data into a lower-dimensional latent space capable of achieving the geometrical separation of each object class, and enabling accurate object classification. We provide an empirical analysis of the benefit of multi-grasp perception for object identification, and show its impact on the separation of the objects in sensor space. Notably, we find the classification accuracy to change widely across the number of grasps, ranging from 47.0% for a single grasp, to 99.9% for 10 grasps.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10121962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10121962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与视觉检测相比,使用触觉检测更有优势,因为它可以在闭塞的环境中部署,并且可以提供有关物体材料属性的更深入信息。柔软的手越来越多地用于触觉对象识别,提供了高度的适应性,而不需要复杂的控制方案。在这项工作中,我们提出了一个框架,通过利用配备分布式触觉传感的柔软手的顺应性来识别任何姿势的一系列物体。我们提出了EDAMS,一种用于多抓取软检测的编码器-解码器架构和一种能够对多个抓取信息进行编码的自适应数据结构,同时解耦了对姿态顺序的依赖。我们训练模型将高维多抓触觉传感器数据映射到能够实现每个物体类别几何分离的低维潜在空间,从而实现准确的物体分类。我们对多抓取感知对目标识别的好处进行了实证分析,并展示了其对传感器空间中目标分离的影响。值得注意的是,我们发现分类准确率在抓取次数上变化很大,从单个抓取的47.0%到10个抓取的99.9%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EDAMS: An Encoder-Decoder Architecture for Multi-grasp Soft Sensing Object Recognition
The use of tactile sensing exhibits benefits over visual detection as it can be deployed in occluded environments and can provide deeper information about an object's material properties. Soft hands have increasingly been used for tactile object identification, providing a high degree of adaptability without requiring complex control schemes. In this work, we propose a framework for identifying a range of objects in any pose by exploiting the compliance of a soft hand equipped with distributed tactile sensing. We propose EDAMS, an Encoder-Decoder Architecture for Multi-grasp Soft sensing and an ad-hoc data structure capable of encoding information on multiple grasps, while decoupling the dependency on the pose order. We train the model to map the high-dimensional multi-grasp tactile sensor data into a lower-dimensional latent space capable of achieving the geometrical separation of each object class, and enabling accurate object classification. We provide an empirical analysis of the benefit of multi-grasp perception for object identification, and show its impact on the separation of the objects in sensor space. Notably, we find the classification accuracy to change widely across the number of grasps, ranging from 47.0% for a single grasp, to 99.9% for 10 grasps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信