LESG:基于学习和经济的调度器实现

L. M. Khanli, Nahideh Derakhshan Fard
{"title":"LESG:基于学习和经济的调度器实现","authors":"L. M. Khanli, Nahideh Derakhshan Fard","doi":"10.1109/ICBNMT.2009.5347796","DOIUrl":null,"url":null,"abstract":"In a dynamic environment like grid with huge number of subtasks, flexible approach is necessary to manage resource allocation. Grid is a robust technique in parallel computing. The central component of grid is resource management system (RMS). The main functions of RMS are scheduling and allocation of subtasks. The goal of this paper is to provide an optimal learning solution for dynamically choosing appropriate resource. In this paper we introduce an intelligent approach to schedule subtasks based on reinforcement learning. That is named LESG. In LESG a flexible allocation according to subtasks and resources attributes, increases performance of gird.","PeriodicalId":267128,"journal":{"name":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LESG: Learning and economic based scheduler implementation\",\"authors\":\"L. M. Khanli, Nahideh Derakhshan Fard\",\"doi\":\"10.1109/ICBNMT.2009.5347796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a dynamic environment like grid with huge number of subtasks, flexible approach is necessary to manage resource allocation. Grid is a robust technique in parallel computing. The central component of grid is resource management system (RMS). The main functions of RMS are scheduling and allocation of subtasks. The goal of this paper is to provide an optimal learning solution for dynamically choosing appropriate resource. In this paper we introduce an intelligent approach to schedule subtasks based on reinforcement learning. That is named LESG. In LESG a flexible allocation according to subtasks and resources attributes, increases performance of gird.\",\"PeriodicalId\":267128,\"journal\":{\"name\":\"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBNMT.2009.5347796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBNMT.2009.5347796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在网格这样具有大量子任务的动态环境中,需要灵活的方法来管理资源分配。网格是并行计算中的一种鲁棒技术。网格的核心是资源管理系统(RMS)。RMS的主要功能是子任务的调度和分配。本文的目标是为动态选择合适的资源提供一个最优的学习方案。本文介绍了一种基于强化学习的智能调度子任务的方法。它被命名为LESG。在LESG中,根据子任务和资源属性进行灵活分配,提高了网格的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LESG: Learning and economic based scheduler implementation
In a dynamic environment like grid with huge number of subtasks, flexible approach is necessary to manage resource allocation. Grid is a robust technique in parallel computing. The central component of grid is resource management system (RMS). The main functions of RMS are scheduling and allocation of subtasks. The goal of this paper is to provide an optimal learning solution for dynamically choosing appropriate resource. In this paper we introduce an intelligent approach to schedule subtasks based on reinforcement learning. That is named LESG. In LESG a flexible allocation according to subtasks and resources attributes, increases performance of gird.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信