用户级实时属性模式的正式验证

Ning Ge, M. Pantel, Silvano Dal-Zilio
{"title":"用户级实时属性模式的正式验证","authors":"Ning Ge, M. Pantel, Silvano Dal-Zilio","doi":"10.1109/TASE.2017.8285630","DOIUrl":null,"url":null,"abstract":"To ease the expression of real-time requirements, Dwyer, and then Konrad, studied a large collection of existing systems in order to identify a set of real-time property patterns covering most of the useful use cases. The goal was to provide a set of reusable patterns that system designers can instantiate to express requirements instead of using complex temporal logic formulas. A limitation of this approach is that the choice of patterns is more oriented towards expressiveness than efficiency; meaning that it does not take into account the computational complexity of checking patterns. For this purpose, we define a set of verification-dedicated, atomic property patterns for qualitative and quantitative real-time requirements. End-user requirements can then be expressed as a composition of these patterns using a predefined meta-model and a mapping library. These properties can be checked efficiently using a set of elementary observers and a model checking approach.","PeriodicalId":221968,"journal":{"name":"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Formal verification of user-level real-time property patterns\",\"authors\":\"Ning Ge, M. Pantel, Silvano Dal-Zilio\",\"doi\":\"10.1109/TASE.2017.8285630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ease the expression of real-time requirements, Dwyer, and then Konrad, studied a large collection of existing systems in order to identify a set of real-time property patterns covering most of the useful use cases. The goal was to provide a set of reusable patterns that system designers can instantiate to express requirements instead of using complex temporal logic formulas. A limitation of this approach is that the choice of patterns is more oriented towards expressiveness than efficiency; meaning that it does not take into account the computational complexity of checking patterns. For this purpose, we define a set of verification-dedicated, atomic property patterns for qualitative and quantitative real-time requirements. End-user requirements can then be expressed as a composition of these patterns using a predefined meta-model and a mapping library. These properties can be checked efficiently using a set of elementary observers and a model checking approach.\",\"PeriodicalId\":221968,\"journal\":{\"name\":\"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASE.2017.8285630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2017.8285630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了简化实时需求的表达,Dwyer和Konrad研究了大量现有系统,以确定一组涵盖大多数有用用例的实时属性模式。目标是提供一组可重用的模式,系统设计人员可以实例化这些模式来表达需求,而不是使用复杂的时序逻辑公式。这种方法的一个限制是模式的选择更倾向于表达性而不是效率;这意味着它没有考虑到检查模式的计算复杂性。为此,我们为定性和定量实时需求定义了一组专用于验证的原子属性模式。然后,终端用户需求可以使用预定义的元模型和映射库表示为这些模式的组合。可以使用一组基本观察器和模型检查方法有效地检查这些属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal verification of user-level real-time property patterns
To ease the expression of real-time requirements, Dwyer, and then Konrad, studied a large collection of existing systems in order to identify a set of real-time property patterns covering most of the useful use cases. The goal was to provide a set of reusable patterns that system designers can instantiate to express requirements instead of using complex temporal logic formulas. A limitation of this approach is that the choice of patterns is more oriented towards expressiveness than efficiency; meaning that it does not take into account the computational complexity of checking patterns. For this purpose, we define a set of verification-dedicated, atomic property patterns for qualitative and quantitative real-time requirements. End-user requirements can then be expressed as a composition of these patterns using a predefined meta-model and a mapping library. These properties can be checked efficiently using a set of elementary observers and a model checking approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信