无法区分混淆从循环安全

Romain Gay, R. Pass
{"title":"无法区分混淆从循环安全","authors":"Romain Gay, R. Pass","doi":"10.1145/3406325.3451070","DOIUrl":null,"url":null,"abstract":"We show the existence of indistinguishability obfuscators (iO) for general circuits assuming subexponential security of: (a) the Learning with Errors (LWE) assumption (with subexponential modulus-to-noise ratio); (b) a circular security conjecture regarding the Gentry-Sahai-Waters' (GSW) encryption scheme and a Packed version of Regev's encryption scheme. The circular security conjecture states that a notion of leakage-resilient security, that we prove is satisfied by GSW assuming LWE, is retained in the presence of an encrypted key-cycle involving GSW and Packed Regev.","PeriodicalId":132752,"journal":{"name":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Indistinguishability obfuscation from circular security\",\"authors\":\"Romain Gay, R. Pass\",\"doi\":\"10.1145/3406325.3451070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the existence of indistinguishability obfuscators (iO) for general circuits assuming subexponential security of: (a) the Learning with Errors (LWE) assumption (with subexponential modulus-to-noise ratio); (b) a circular security conjecture regarding the Gentry-Sahai-Waters' (GSW) encryption scheme and a Packed version of Regev's encryption scheme. The circular security conjecture states that a notion of leakage-resilient security, that we prove is satisfied by GSW assuming LWE, is retained in the presence of an encrypted key-cycle involving GSW and Packed Regev.\",\"PeriodicalId\":132752,\"journal\":{\"name\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406325.3451070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406325.3451070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

我们证明了假设亚指数安全性的一般电路存在不可区分混淆器(iO):(a)有误差学习(LWE)假设(具有亚指数模噪比);(b)关于genry - sahai - waters (GSW)加密方案的循环安全猜想和Regev加密方案的压缩版本。循环安全猜想表明,在涉及GSW和打包Regev的加密密钥循环存在的情况下,我们证明了GSW假设LWE可以满足泄漏弹性安全的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indistinguishability obfuscation from circular security
We show the existence of indistinguishability obfuscators (iO) for general circuits assuming subexponential security of: (a) the Learning with Errors (LWE) assumption (with subexponential modulus-to-noise ratio); (b) a circular security conjecture regarding the Gentry-Sahai-Waters' (GSW) encryption scheme and a Packed version of Regev's encryption scheme. The circular security conjecture states that a notion of leakage-resilient security, that we prove is satisfied by GSW assuming LWE, is retained in the presence of an encrypted key-cycle involving GSW and Packed Regev.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信