可扩展推荐系统的增量核映射算法

M. Ghazanfar, S. Szedmák, A. Prügel-Bennett
{"title":"可扩展推荐系统的增量核映射算法","authors":"M. Ghazanfar, S. Szedmák, A. Prügel-Bennett","doi":"10.1109/ICTAI.2011.183","DOIUrl":null,"url":null,"abstract":"Recommender systems apply machine learning techniques for filtering unseen information and can predict whether a user would like a given item. Kernel Mapping Recommender (KMR) system algorithms have been proposed, which offer state-of-the-art performance. One potential drawback of the KMR algorithms is that the training is done in one step and hence they cannot accommodate the incremental update with the arrival of new data making them unsuitable for the dynamic environments. From this line of research, we propose a new heuristic, which can build the model incrementally without retraining the whole model from scratch when new data (item or user) are added to the recommender system dataset. Furthermore, we proposed a novel perceptron-type algorithm, which is a fast incremental algorithm for building the model that maintains a good level of accuracy and scales well with the data. We show empirically over two datasets that the proposed algorithms give quite accurate results while providing significant computation savings.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Incremental Kernel Mapping Algorithms for Scalable Recommender Systems\",\"authors\":\"M. Ghazanfar, S. Szedmák, A. Prügel-Bennett\",\"doi\":\"10.1109/ICTAI.2011.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems apply machine learning techniques for filtering unseen information and can predict whether a user would like a given item. Kernel Mapping Recommender (KMR) system algorithms have been proposed, which offer state-of-the-art performance. One potential drawback of the KMR algorithms is that the training is done in one step and hence they cannot accommodate the incremental update with the arrival of new data making them unsuitable for the dynamic environments. From this line of research, we propose a new heuristic, which can build the model incrementally without retraining the whole model from scratch when new data (item or user) are added to the recommender system dataset. Furthermore, we proposed a novel perceptron-type algorithm, which is a fast incremental algorithm for building the model that maintains a good level of accuracy and scales well with the data. We show empirically over two datasets that the proposed algorithms give quite accurate results while providing significant computation savings.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

推荐系统应用机器学习技术来过滤看不见的信息,并可以预测用户是否喜欢给定的商品。核映射推荐(KMR)系统算法提供了最先进的性能。KMR算法的一个潜在缺点是训练是在一个步骤中完成的,因此它们不能适应随着新数据的到来而增加的更新,使它们不适合动态环境。根据这一研究思路,我们提出了一种新的启发式方法,当新数据(项目或用户)添加到推荐系统数据集中时,它可以增量地构建模型,而无需从头开始重新训练整个模型。此外,我们提出了一种新的感知器类型算法,该算法是一种快速增量算法,用于构建保持良好精度和随数据良好缩放的模型。我们在两个数据集上的经验表明,所提出的算法给出了相当准确的结果,同时提供了显著的计算节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Kernel Mapping Algorithms for Scalable Recommender Systems
Recommender systems apply machine learning techniques for filtering unseen information and can predict whether a user would like a given item. Kernel Mapping Recommender (KMR) system algorithms have been proposed, which offer state-of-the-art performance. One potential drawback of the KMR algorithms is that the training is done in one step and hence they cannot accommodate the incremental update with the arrival of new data making them unsuitable for the dynamic environments. From this line of research, we propose a new heuristic, which can build the model incrementally without retraining the whole model from scratch when new data (item or user) are added to the recommender system dataset. Furthermore, we proposed a novel perceptron-type algorithm, which is a fast incremental algorithm for building the model that maintains a good level of accuracy and scales well with the data. We show empirically over two datasets that the proposed algorithms give quite accurate results while providing significant computation savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信