基于领域适应bert的阿拉伯语方言识别和微博情感分析模型

Giyaseddin Bayrak, Abdul Majeed Issifu
{"title":"基于领域适应bert的阿拉伯语方言识别和微博情感分析模型","authors":"Giyaseddin Bayrak, Abdul Majeed Issifu","doi":"10.18653/v1/2022.wanlp-1.43","DOIUrl":null,"url":null,"abstract":"This paper summarizes the solution of the Nuanced Arabic Dialect Identification (NADI) 2022 shared task. It consists of two subtasks: a country-level Arabic Dialect Identification (ADID) and an Arabic Sentiment Analysis (ASA). Our work shows the importance of using domain-adapted models and language-specific pre-processing in NLP task solutions. We implement a simple but strong baseline technique to increase the stability of fine-tuning settings to obtain a good generalization of models. Our best model for the Dialect Identification subtask achieves a Macro F-1 score of 25.54% as an average of both Test-A (33.89%) and Test-B (19.19%) F-1 scores. We also obtained a Macro F-1 score of 74.29% of positive and negative sentiments only, in the Sentiment Analysis task.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Domain-Adapted BERT-based Models for Nuanced Arabic Dialect Identification and Tweet Sentiment Analysis\",\"authors\":\"Giyaseddin Bayrak, Abdul Majeed Issifu\",\"doi\":\"10.18653/v1/2022.wanlp-1.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarizes the solution of the Nuanced Arabic Dialect Identification (NADI) 2022 shared task. It consists of two subtasks: a country-level Arabic Dialect Identification (ADID) and an Arabic Sentiment Analysis (ASA). Our work shows the importance of using domain-adapted models and language-specific pre-processing in NLP task solutions. We implement a simple but strong baseline technique to increase the stability of fine-tuning settings to obtain a good generalization of models. Our best model for the Dialect Identification subtask achieves a Macro F-1 score of 25.54% as an average of both Test-A (33.89%) and Test-B (19.19%) F-1 scores. We also obtained a Macro F-1 score of 74.29% of positive and negative sentiments only, in the Sentiment Analysis task.\",\"PeriodicalId\":355149,\"journal\":{\"name\":\"Workshop on Arabic Natural Language Processing\",\"volume\":\"246 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Arabic Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.wanlp-1.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文总结了细致入微的阿拉伯语方言识别(NADI) 2022共享任务的解决方案。它由两个子任务组成:国家级阿拉伯语方言识别(addid)和阿拉伯语情感分析(ASA)。我们的工作显示了在NLP任务解决方案中使用领域适应模型和特定语言预处理的重要性。我们实现了一种简单但强大的基线技术来增加微调设置的稳定性,以获得良好的模型泛化。我们的方言识别子任务的最佳模型在测试a(33.89%)和测试b(19.19%)的F-1分数的平均值下获得了25.54%的宏观F-1分数。在情绪分析任务中,我们也获得了仅正面和负面情绪的宏观F-1得分为74.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain-Adapted BERT-based Models for Nuanced Arabic Dialect Identification and Tweet Sentiment Analysis
This paper summarizes the solution of the Nuanced Arabic Dialect Identification (NADI) 2022 shared task. It consists of two subtasks: a country-level Arabic Dialect Identification (ADID) and an Arabic Sentiment Analysis (ASA). Our work shows the importance of using domain-adapted models and language-specific pre-processing in NLP task solutions. We implement a simple but strong baseline technique to increase the stability of fine-tuning settings to obtain a good generalization of models. Our best model for the Dialect Identification subtask achieves a Macro F-1 score of 25.54% as an average of both Test-A (33.89%) and Test-B (19.19%) F-1 scores. We also obtained a Macro F-1 score of 74.29% of positive and negative sentiments only, in the Sentiment Analysis task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信