智能评估。孟古那坎反向传播神经网络

Agung Teguh Wibowo Almais, Cahyo Crysdian, Khadijah Fahmi Hayati Holle, Akbar Roihan
{"title":"智能评估。孟古那坎反向传播神经网络","authors":"Agung Teguh Wibowo Almais, Cahyo Crysdian, Khadijah Fahmi Hayati Holle, Akbar Roihan","doi":"10.30812/matrik.v21i3.1469","DOIUrl":null,"url":null,"abstract":"Penerapan scraping dan Backpropagation Neural Network dapat menjadikan penilaian Self- Assessment Questionnaire (SAQ) website Pemerintah Daerah Provinsi Jawa Timur lebih smart jika dibandingkan dengan model assessment yang sudah ada. Langkah awal yaitu melakukan scraping website Pemerintah Daerah Provinsi Jawa Timur untuk mendapatkan nilai SAQ. Hasil scraping tersebut akan digunakan sebagai data uji pada metode Backpropagation Neural Network, kemudian hasil data uji akan di proses menggunakan 4 jenis model data yang berbeda-beda dari segi jumlah iterasi dan hidden layer untuk mendapatkan akurasi terbaik. Pada model data A menggunakan iterasi 1000 dan 5 hidden layer menghasilkan nilai Mean Squared Error (MSE) 0,0117, Mean Absolute Percent Error (MAPE) 39,36% dan Akurasi 60.64%. Model data B menggunakan iterasi 1000 dan 7 hidden layer menghasilkan nilai MSE 0,0087, MAPE 29,49% dan Akurasi 70,50%. Model data C dengan menggunakan iterasi 2000 dan 9 hidden layer menghasilkan nilai MSE 0,0064, MAPE 24,46% dan Akurasi 75,53%. Model data D menggunakan iterasi 2000 dan 9 hidden layer menghasilkan nilai MSE 0,0036, MAPE 18,71% dan Akurasi 81,28%. Dari hasil ujicoba tersebut bahwa model data D yang menggunakan iterasi 2000 dan 9 hidden layer menghasilkan tingkat akurasi yang terbaik sehingga model data D dapat dijadikan acuan hasil penilaian website Pemerintah Daerah Provinsi Jawa Timur tahun 2021.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smart Assessment Menggunakan Backpropagation Neural Network\",\"authors\":\"Agung Teguh Wibowo Almais, Cahyo Crysdian, Khadijah Fahmi Hayati Holle, Akbar Roihan\",\"doi\":\"10.30812/matrik.v21i3.1469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penerapan scraping dan Backpropagation Neural Network dapat menjadikan penilaian Self- Assessment Questionnaire (SAQ) website Pemerintah Daerah Provinsi Jawa Timur lebih smart jika dibandingkan dengan model assessment yang sudah ada. Langkah awal yaitu melakukan scraping website Pemerintah Daerah Provinsi Jawa Timur untuk mendapatkan nilai SAQ. Hasil scraping tersebut akan digunakan sebagai data uji pada metode Backpropagation Neural Network, kemudian hasil data uji akan di proses menggunakan 4 jenis model data yang berbeda-beda dari segi jumlah iterasi dan hidden layer untuk mendapatkan akurasi terbaik. Pada model data A menggunakan iterasi 1000 dan 5 hidden layer menghasilkan nilai Mean Squared Error (MSE) 0,0117, Mean Absolute Percent Error (MAPE) 39,36% dan Akurasi 60.64%. Model data B menggunakan iterasi 1000 dan 7 hidden layer menghasilkan nilai MSE 0,0087, MAPE 29,49% dan Akurasi 70,50%. Model data C dengan menggunakan iterasi 2000 dan 9 hidden layer menghasilkan nilai MSE 0,0064, MAPE 24,46% dan Akurasi 75,53%. Model data D menggunakan iterasi 2000 dan 9 hidden layer menghasilkan nilai MSE 0,0036, MAPE 18,71% dan Akurasi 81,28%. Dari hasil ujicoba tersebut bahwa model data D yang menggunakan iterasi 2000 dan 9 hidden layer menghasilkan tingkat akurasi yang terbaik sehingga model data D dapat dijadikan acuan hasil penilaian website Pemerintah Daerah Provinsi Jawa Timur tahun 2021.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v21i3.1469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i3.1469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Assessment Menggunakan Backpropagation Neural Network
Penerapan scraping dan Backpropagation Neural Network dapat menjadikan penilaian Self- Assessment Questionnaire (SAQ) website Pemerintah Daerah Provinsi Jawa Timur lebih smart jika dibandingkan dengan model assessment yang sudah ada. Langkah awal yaitu melakukan scraping website Pemerintah Daerah Provinsi Jawa Timur untuk mendapatkan nilai SAQ. Hasil scraping tersebut akan digunakan sebagai data uji pada metode Backpropagation Neural Network, kemudian hasil data uji akan di proses menggunakan 4 jenis model data yang berbeda-beda dari segi jumlah iterasi dan hidden layer untuk mendapatkan akurasi terbaik. Pada model data A menggunakan iterasi 1000 dan 5 hidden layer menghasilkan nilai Mean Squared Error (MSE) 0,0117, Mean Absolute Percent Error (MAPE) 39,36% dan Akurasi 60.64%. Model data B menggunakan iterasi 1000 dan 7 hidden layer menghasilkan nilai MSE 0,0087, MAPE 29,49% dan Akurasi 70,50%. Model data C dengan menggunakan iterasi 2000 dan 9 hidden layer menghasilkan nilai MSE 0,0064, MAPE 24,46% dan Akurasi 75,53%. Model data D menggunakan iterasi 2000 dan 9 hidden layer menghasilkan nilai MSE 0,0036, MAPE 18,71% dan Akurasi 81,28%. Dari hasil ujicoba tersebut bahwa model data D yang menggunakan iterasi 2000 dan 9 hidden layer menghasilkan tingkat akurasi yang terbaik sehingga model data D dapat dijadikan acuan hasil penilaian website Pemerintah Daerah Provinsi Jawa Timur tahun 2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信